Skip to main content
Log in

Supercritical fluids as reaction media for molecular catalysis

  • Published:
Catalysis Surveys from Japan Aims and scope Submit manuscript

Abstract

Chemical transformations in supercritical fluids (SCFs) have enormous potential advantages. The possibilities of rate enhancement and adjustable selectivities will motivate the research of molecular catalysis in SCFs. Recent progress in the organometallic catalysis under supercritical conditions is reviewed with emphasis on the benefits of utilization of supercritical carbon dioxide (scCO2) both as a reaction medium and reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Jessop, T. Ikariya and R. Noyori, Chem. Rev. 99 (1999) 475.

    Google Scholar 

  2. P.G. Jessop, T. Ikariya and R. Noyori, Science 269 (1995) 1065.

    Google Scholar 

  3. T. Ikariya and R. Noyori, in: Transition Metal Catalysed Reactions, eds. S.-I. Murahashi and S.G. Davies (Blackwell Science, Oxford, 1995) p. 1.

    Google Scholar 

  4. P.G. Jessop and W. Leitner, eds., Chemical Synthesis Using Supercritical Fluids (Wiley-VCH, Weinheim, 1999).

    Google Scholar 

  5. O. Kajimoto, Chem. Rev. 99 (1999) 355.

    Google Scholar 

  6. J.M. DeSimone, Z. Guan and C.S. Elsbernd, Science 257 (1992) 945.

    Google Scholar 

  7. D.R. Palo and C. Erkey, J. Chem. Eng. Data 43 (1998) 47.

    Google Scholar 

  8. P.G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Am. Chem. Soc. 118 (1996) 344.

    Google Scholar 

  9. M.J. Carrott, B.E. Waller, N.G. Smart and C.M. Wai, J. Chem. Soc. Chem. Commun. (1998) 373.

  10. M. A-Khorassani and L.T. Taylor, J. Chromatogr. Sci. 27 (1989) 329.

    Google Scholar 

  11. M. A-Khorassani, J.W. Hellgeth and L.T. Taylor, Anal. Chem. 59 (1987) 2077.

    Google Scholar 

  12. U. Kreher, S. Schebesta and D. Walther, Anorg. Allg. Chem. 624 (1998) 602.

    Google Scholar 

  13. N. Saito, Y. Ikushima and T. Goto, Bull. Chem. Soc. Jpn. 63 (1990) 1532.

    Google Scholar 

  14. F. Bickmann, B. Wenclawiak and Z. Fresenius, Anal. Chem. 320 (1985) 261.

    Google Scholar 

  15. Y. Kayaki, Y. Noguchi, S. Iwasa, T. Ikariya and R. Noyori, J. Chem. Soc. Chem. Commun. (1999) 1235.

  16. A.F. Lagante, B.N. Hansen, T.J. Bruno and R.E. Sievers, Inorg. Chem. 34 (1995) 5781.

    Google Scholar 

  17. Y.H. Lin, N.G. Smart and C.M. Wai, Trends Anal. Chem. 14 (1995) 123.

    Google Scholar 

  18. A.V. Yazdi and E.J. Beckman, Ind. Eng. Chem. Res. 36 (1997) 2368.

    Google Scholar 

  19. R.P. Hughes and H.A. Trujillo, Organometallics 15 (1996) 286.

    Google Scholar 

  20. S. Kainz, D. Koch, W. Baumann and W. Leitner, Angew. Chem. Int. Ed. Engl. 36 (1997) 1628.

    Google Scholar 

  21. N.G. Smart, T. Carleson, T. Kast, A.A. Clifford, M.D. Burford and C.M. Wai, Talanta 44 (1997) 137.

    Google Scholar 

  22. M.A. Carroll and A.B. Holmes, J. Chem. Soc. Chem. Commun. (1998) 1395.

  23. D.K. Morita, D.R. Pesiri, S.A. David, W.H. Glaze and W. Tumas, J. Chem. Soc. Chem. Commun. (1998) 1397.

  24. H. Nishida, N. Takada and M. Yoshimura, Bull. Chem. Soc. Jpn. 57 (1984) 2600.

    Google Scholar 

  25. M. Brookhart, B. Grant and A.F. Volpe, Jr., Organometallics 11 (1992) 3920.

    Google Scholar 

  26. M.J. Burk, S. Feng, M.F. Gross and W. Tumas, J. Am. Chem. Soc. 117 (1995) 8277.

    Google Scholar 

  27. M. Poliakoff, S.M. Howdle and S.G. Kazarian, Angew. Chem. Int. Ed. Engl. 34 (1995) 1275.

    Google Scholar 

  28. G.M. Kramer and F. Leder, US Patent 3 880 945 (1975).

  29. J.W. Rathke, R.J. Klingler and T.R. Krause, Organometallics 10 (1991) 1350.

    Google Scholar 

  30. P.G. Jessop, T. Ikariya and R. Noyori, Nature 368 (1994) 231.

    Google Scholar 

  31. B. Subramaniam and M.A. McHugh, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 1.

    Google Scholar 

  32. J.F. Brennecke, in: Supercritical Fluid Engineering Science Fundamentals and Applications, ACS Symp. Ser., Vol. 514, eds. E. Kiran and J.F. Brennecke (Am. Chem. Soc., Washington, DC, 1993) p. 201.

    Google Scholar 

  33. A.A. Clifford, in: Supercritical Fluids Fundamentals for Application of the NATO ASI Series E, eds. E. Kiran and J.M.H.L. Sengers (Kluwer, Amsterdam, 1994) p. 449.

    Google Scholar 

  34. P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino and E.E. Brock, AIChE J. 41 (1995) 1723.

    Google Scholar 

  35. C.A. Eckert, B.L. Knutson and P.G. Debenedetti, Nature 383 (1996) 313.

    Google Scholar 

  36. T. Clifford and K. Bartle, Chem. Ind. (1996) 449.

  37. P.T. Anastas and T.C. Williamson, eds., Green Chemistry Frontiers in Benign Chemical Syntheses and Processes (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  38. T. Toriumi, J. Sakai, T. Kawakami, D. Osawa and M. Azuma, J. Soc. Chem. Ind. Jpn. 49 (1946) 1.

    Google Scholar 

  39. J.F. Brennecke, in: Supercritical Fluid Engineering Science, ACS Symp. Ser., Vol. 514, eds. E. Kiran and J.F. Brennecke (Am. Chem. Soc., Washington, DC, 1993) p. 201.

    Google Scholar 

  40. B.L. Knutson, A.K. Dillow, C.L. Liotta and C.A. Eckert, in: Innovations in Supercritical Fluids, Science and Technology, ACS Symp. Ser., Vol. 608, eds. K.W. Hutchenson and N.R. Foster (Am. Chem. Soc., Washington, DC, 1995) p. 166.

    Google Scholar 

  41. R.D. Weinstein, A.D. Renslo, R.L. Danheiser, J.G. Harris and J.W. Tester, J. Phys. Chem. 100 (1996) 12337.

    Google Scholar 

  42. V. Ipatiev and O. Rutala, Ber. 46 (1913) 1748.

    Google Scholar 

  43. Y. Sun, C. LeBlond, J. Wang and D.G. Blackmond, J. Am. Chem. Soc. 117 (1995) 12647.

    Google Scholar 

  44. S. Kainz, D. Koch and W. Leitner, in: Selective Reactions of Metal Activated Molecules, eds. H. Werner and W. Schreier (Vieweg, Wiesbaden, 1998) p. 151.

    Google Scholar 

  45. H. Coenen, R. Hagen and E. Kriegel, US Patent 4 485 003 (1984).

  46. P.G. Jessop, T. Ikariya and R. Noyori, Organometallics 14 (1995) 1510.

    Google Scholar 

  47. M.G. Hitzler and M. Poliakoff, J. Chem. Soc. Chem. Commun. (1997) 1667.

  48. R. Noyori, Asymmetric Catalysis in Organic Synthesis (Wiley, New York, 1994).

    Google Scholar 

  49. M.J. Burk, S. Feng, M.F. Gross and W. Tumas, J. Am. Chem. Soc. 117 (1995) 8277.

    Google Scholar 

  50. J.-L. Xiao, P.G. Jessop, T. Ikariya and R. Noyori (1999), in preparation.

  51. D.C. Wynne and P.G. Jessop, Angew. Chem. Int. Ed. Engl. 38 (1999) 1143.

    Google Scholar 

  52. S. Kainz, A. Brinkmann, W. Leitner and A. Pfaltz, J. Am. Chem. Soc. 121 (1999) 6421.

    Google Scholar 

  53. J.W. Rathke, R.J. Klingler and T.R. Krause, Organometallics 11 (1992) 585.

    Google Scholar 

  54. Y. Guo and A. Akgerman, Ind. Eng. Chem. Res. 36 (1997) 4581.

    Google Scholar 

  55. S. Gaemers and C.J. Elsevier, Chem. Soc. Rev. 28 (1999) 135.

    Google Scholar 

  56. R.J. Klingler and J.W. Rathke, J. Am. Chem. Soc. 116 (1994) 4772.

    Google Scholar 

  57. D. Koch and W. Leitner, J. Am. Chem. Soc.120 (1998) 13398.

    Google Scholar 

  58. D.R. Palo and C. Erkey, Ind. Eng. Chem. Res. 37 (1998) 4203.

    Google Scholar 

  59. I. Bach and D.J. Cole-Hamilton, J. Chem. Soc. Chem. Commun. (1998) 1463.

  60. G. Franciò and W. Leitner, J. Chem. Soc. Chem. Commun. (1999) 1663.

  61. S. Kainz and W. Leitner, Catal. Lett. 55 (1998) 223.

    Google Scholar 

  62. N. Jeong, S.H. Hwang, Y.W. Lee and J.S. Lim, J. Am. Chem. Soc. 119 (1997) 10 549.

    Google Scholar 

  63. N. Jeong, S.H. Hwang, Y. Lee and Y.K. Chung, J. Am. Chem. Soc. 116 (1994) 3159.

    Google Scholar 

  64. K.S. Jerome and E.J. Parsons, Organometallics 12 (1993) 2991.

    Google Scholar 

  65. H. Borwieck, O. Walter, E. Dinjus and J. Rebizant, J. Organomet. Chem. 570 (1998) 121.

    Google Scholar 

  66. K. Voigt, U. Schick, F.E. Meyer and A. de Meijere, Synlett (1994) 189.

  67. N. Shezad, R.S. Oakes, A.A. Clifford and C.M. Rayner, Tetrahedron Lett. 40 (1999) 2221.

    Google Scholar 

  68. A. Fürstner, D. Koch, K. Langemann, W. Leitner and C. Six, Angew. Chem. Int. Ed. Engl. 36 (1997) 2466.

    Google Scholar 

  69. C.D. Mistele, J.M. DeSimone and H.H. Thorp, J. Macromol. Sci., Pure Appl. Chem. A 33 (1996) 953.

    Google Scholar 

  70. J.G. Hamilton, J.J. Rooney, J.M. DeSimone and C.D. Mistele, Macromolecules 31 (1998) 4387.

    Google Scholar 

  71. A. Wegner and W. Leitner, J. Chem. Soc. Chem. Commun. (1999) 1583.

  72. R.S. Oakes, T.J. Heppenstall, N. Shezad, A.A. Clifford and C.M. Rayner, J. Chem. Soc. Chem. Commun. (1999) 1459.

  73. X.-W. Wu, Y. Oshima and S. Koda, Chem. Lett. (1997) 1045.

  74. S.-I. Murahashi, T. Naota and N. Komiya, Tetrahedron Lett. 36 (1995) 8059.

    Google Scholar 

  75. L. Jia, H. Jiang and J. Li, J. Chem. Soc. Chem. Commun. (1999) 985.

  76. D.R. Pesiri, D.K. Morita, W. Glaze and W. Tumas, J. Chem. Soc. Chem. Commun. (1998) 1015.

  77. P.G. Jessop, Topics Catal. 5 (1998) 95.

    Google Scholar 

  78. P.G. Jessop, T. Ikariya and R. Noyori, Chem. Rev. 95, 259 (1995).

    Google Scholar 

  79. P.G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Am. Chem. Soc. 116 (1994) 8851.

    Google Scholar 

  80. P.G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Chem. Soc. Chem. Commun. (1995) 707.

  81. Y. Kayaki, T. Suzuki and T. Ikariya, in preparation.

  82. O. Kröcher, R.A. Köppel and A. Baiker, J. Chem. Soc. Chem. Commun. (1997) 453.

  83. O. Kröcher, R.A. Köppel and A. Baiker, J. Chem. Soc. Chem. Commun. (1996) 1497.

  84. M.S. Super and E.J. Beckman, Trends Polym. Sci. 5 (1997) 236.

    Google Scholar 

  85. D.J. Darensbourg and N.W. Holtcamp, Coord. Chem. Rev. 153 (1996) 155.

    Google Scholar 

  86. A. Rokicki and W. Kuran, J. Macromol. Sci. Rev. Macromol. Chem. C21 (1981) 135.

    Google Scholar 

  87. E.J. Beckman, Science 283 (1999) 946.

    Google Scholar 

  88. S. Inoue, H. Koinuma and T. Tsuruta, J. Polym. Sci., Polym. Lett. B7 (1969) 287.

    Google Scholar 

  89. W. Kuran, S. Pasynkiewicz, J. Skupinska and A. Rokicki, Makromol. Chem. 177 (1976) 11.

    Google Scholar 

  90. D.J. Darensbourg, N.W. Stafford and T. Katsurao, J. Mol. Catal. A 104 (1995) L1.

    Google Scholar 

  91. D.J. Darensbourg and M.W. Holtcamp, Macromolecules 28 (1995) 7577.

    Google Scholar 

  92. D.J. Darensbourg, M.W. Holtcamp, G.E. Struck, M.S. Zimmer, S.A. Niezgoda, P. Rainey, J.B. Robertson, J.D. Draper and J.H. Reibenspies, J. Am. Chem. Soc. 121 (1999) 107.

    Google Scholar 

  93. M. Super, E. Berluche, C. Costello and E. Beckman, Macromolecules 30 (1997) 368.

    Google Scholar 

  94. M. Super and E. Beckman, J. Macromol. Symp. 127 (1998) 89.

    Google Scholar 

  95. M. Cheng, E.B. Lobkovsky and G.W. Coates, J. Am. Chem. Soc. 120 (1998) 11 018.

    Google Scholar 

  96. J. Kizlink and I. Pastucha, Collect. Czech. Chem. Commun. 60 (1995) 687, and references therein.

    Google Scholar 

  97. T. Sakakura, Y. Saito, M. Okano, J.-C. Choi and T. Sako, J. Org. Chem. 63 (1998) 7095.

    Google Scholar 

  98. T. Sakakura, J.-C. Choi, Y. Saito, T. Masuda, T. Sako and T. Oriyama, J. Org. Chem. 64 (1999) 4506.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikariya, T., Kayaki, Y. Supercritical fluids as reaction media for molecular catalysis. Catalysis Surveys from Asia 4, 39–50 (2000). https://doi.org/10.1023/A:1019032004130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019032004130

Navigation