Catalysis Letters

, Volume 69, Issue 3–4, pp 175–179 | Cite as

Triply‐promoted ethene epoxidation: NOx promotion of the Ag‐catalysed reaction in the presence of alkali and chlorine under electrochemical control

  • Alejandra Palermo
  • Alifiya Husain
  • Richard M. Lambert
Article

Abstract

Potassium, electrochemically supplied from K β"‐alumina to a silver thin film catalyst in the presence of ppm levels of NOx, strongly promotes the selectivity of ethene epoxidation. However, in the absence of gaseous NOx, alkali catastrophically suppresses both activity and selectivity. Addition of surface chlorine via ppm levels of ethylene dichloride further enhances the promotional effect of alkali + NO yielding the highest selectivity of all. The minimum necessary and sufficient conditions for the appearance of NOx promotion are submonolayer quantities of alkali on the metal surface, and ppm levels of gaseous NOx.

ethene epoxidation silver promotion potassium NOx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.B. Grant and R.M. Lambert, Langmuir 1 (1985) 29.CrossRefGoogle Scholar
  2. [2]
    J.G. Serafin, A.C. Liu and S.R. Seyedmonir, J. Mol. Catal. A 131 (1998) 157.CrossRefGoogle Scholar
  3. [3]
    P. Hayden, R.C. Clayton, J.R. Bamforth and A.F.G. Cope, Eur. Patent 003642A2 (1980) to ICI.Google Scholar
  4. [4]
    D.W. Johnson, Eur. Patent No. 0 119 710 (1984) to ICI.Google Scholar
  5. [5]
    P. Hayden, Eur. Patent No. 0 176 253 (1986) to ICI.Google Scholar
  6. [6]
    M. Nakajima, H. Kuboyama, T. Komiyama and K. Yoshida, GB Patent No. 2 161 480 A (1986) to Mitsui Toatsu Chemicals.Google Scholar
  7. [7]
    C.G. Vayenas, S. Bebelis, I.V. Yentekakis and H.-G. Lintz, Catal. Today 11 (1992) 303.CrossRefGoogle Scholar
  8. [8]
    F.J. Williams, A. Palermo, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B 104 (2000) 615.CrossRefGoogle Scholar
  9. [9]
    Ch. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal. 160 (1996) 205.CrossRefGoogle Scholar
  10. [10]
    S. Tracey, A. Palermo, J.P. Holgado Vazquez and R.M. Lambert, J. Catal. 179 (1998) 231.CrossRefGoogle Scholar
  11. [11]
    I.R. Harkness, C. Hardacre, R.M. Lambert, I.V. Yentekakis and C.G. Vayenas, J. Catal. 160 (1996) 19.CrossRefGoogle Scholar
  12. [12]
    R.A. van Santen and H.P.C.E. Kuipers, in: Adv. Catal., Vol. 35 (Academic Press, London, 1987) p. 265.Google Scholar
  13. [13]
    R.B. Grant and R.M. Lambert, J. Catal. 92 (1985) 364.CrossRefGoogle Scholar
  14. [14]
    J.W. Woodward, R.G. Lindgren and W.H. Corcoran, J. Catal. 25 (1972) 292.CrossRefGoogle Scholar
  15. [15]
    N.C. Filkin, M.S. Tikhov, A. Palermo and R.M. Lambert, J. Phys. Chem. B 103 (1999) 2680.CrossRefGoogle Scholar
  16. [16]
    F.J. Williams, A. Palermo, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B 103 (1999) 9960.CrossRefGoogle Scholar
  17. [17]
    W.J. Wytenburg, R.M. Ormerod, K.L. Peat and R.M. Lambert, Surf. Sci. 269/270 (1992) 506.CrossRefGoogle Scholar
  18. [18]
    M. Kitson and R.M. Lambert, Surf. Sci. 110 (1981) 205.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Alejandra Palermo
  • Alifiya Husain
  • Richard M. Lambert

There are no affiliations available

Personalised recommendations