Skip to main content
Log in

Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of polycrystalline WOx/TiO2 samples were prepared by means of a conventional impregnation method. The samples were characterized by means of X-ray diffraction, Vis-UV diffuse reflectance and Raman spectroscopies, nitrogen adsorption at 77 K for determining specific surface areas and surface texture, scanning electron microscopy, and FT-IR monitoring of pyridine adsorption for measuring the surface acidity. Catalytic activity of the samples has been assessed by carrying out as a ``probe'' reaction the photodegradation of 4- nitrophenol in aqueous medium. The results obtained indicate that incorporation of tungsten on titania leads to formation of different surface species, depending on the tungsten loading. Tungsta microcrystals were detected by X-ray diffraction when the nominal molar W/Ti ratio reached a value of 8.0%. FT-IR investigation indicated that the presence of tungsten induces formation of Brønsted and Lewis surface acid sites. The photoactivity results confirm the beneficial effect of tungsten in TiO2 for 4-nitrophenol photodegradation in aqueous medium. The reaction rates are higher than those reported in literature for another set of samples and maximum photoactivity was achieved for a sample containing 1.96 moles of W per 100 moles of Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ai, J. Catal. 49 (1977) 305.

    Article  CAS  Google Scholar 

  2. T. Yamaguchi, Y. Tanaka and K. Tanabe, J. Catal. 65 (1980) 442.

    Article  CAS  Google Scholar 

  3. T. Yamaguchi, S. Nakamura and H. Naguno, in: Proc. 8th Int. Congr. on Catalysis, Vol. 5 (Verlag Chemie, Weinheim, 1984) p. 579.

    Google Scholar 

  4. M. Imanari, Y. Watanabe, S. Matsuda and F. Nakajima, in: Proc. 7th Int. Congr. on Catalysis, eds. T. Seiyama and K. Tanabe (Elsevier, Amsterdam, 1981) p. 841.

    Google Scholar 

  5. S. Morikawa, K. Takahashi, J. Mogi and S. Kurita, Bull. Chem. Soc. Jpn. 55 (1982) 2254.

    Article  CAS  Google Scholar 

  6. W. Lee, W.M. Gao, K. Dwight and A. Wold, Mater. Res. Bull. 27 (1992) 685.

    Article  CAS  Google Scholar 

  7. Y.R. Do, W. Lee, K. Dwight and A. Wold, J. Solid State Chem. 108 (1994) 198.

    Article  CAS  Google Scholar 

  8. G. Marcì, L. Palmisano, A. Sclafani, A.M. Venezia, R. Campostrini, G. Carturan, C. Martìn and G. Solana, J. Chem. Soc. Faraday Trans. 92 (1996) 819.

    Article  Google Scholar 

  9. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  10. M. Schiavello, Electrochim. Acta 38 (1993) 11.

    Article  CAS  Google Scholar 

  11. H. Bosch and E. Peppelenbos, J. Phys. E 10 (1977) 605.

    CAS  Google Scholar 

  12. JCPDS files 21-1276, 21-1275}.

  13. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Sieminewska, Pure Appl. Chem. 57 (1985) 603.

    CAS  Google Scholar 

  14. R.W. Cranston and F.A. Inkley, Adv. Catal. 9 (1957) 143.

    Article  Google Scholar 

  15. S. Lowell and J.E. Shields, Powder Surface Area and Porosity (Chapman & Hall, London, 1984).

    Google Scholar 

  16. E. Borgarello, J. Kiwi, M. Grätzel, I. Pelizzetti and M. Visca, J. Am. Chem. Soc. 104 (1982) 2996.

    Article  CAS  Google Scholar 

  17. C.K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes (Pergamon Press, Oxford, 1962).

    Google Scholar 

  18. R.J. Capwell, F. Spagnolo and M.A. Sesa, Appl. Spectrosc. 26 (1972) 537.

    Article  CAS  Google Scholar 

  19. G. Deo and I.E. Wachs, J. Phys. Chem. 95 (1991) 5889.

    Article  CAS  Google Scholar 

  20. G. Ramis, G. Busca, C. Cristiani, A.S. Elmi and P. Villa, J. Mol. Catal. 61 (1990) 319.

    Article  CAS  Google Scholar 

  21. D.S. Kim, M. Ostromecki and I.E. Wachs, J. Mol. Catal. 106 (1996) 93.

    Article  CAS  Google Scholar 

  22. S.S. Chan, I.E. Wachs, L.L. Murrell, L. Wang and W.K. Hall, J. Phys. Chem. 88 (1984) 5831.

    Article  CAS  Google Scholar 

  23. M.A. Vuurman, I.E. Wachs and A.M. Hit, J. Phys. Chem. 95 (1991) 9928.

    Article  CAS  Google Scholar 

  24. C.F. Baes Jr. and R.E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1970).

    Google Scholar 

  25. I.R. Beattie and T.R. Gilson, J. Chem. Soc. (1965) 2322.

  26. H. Miyata, Y. Nakagawa and H. Naguno, J. Chem. Soc. Faraday Trans. I 79 (1983) 2343.

    Article  CAS  Google Scholar 

  27. V. Rives, Opt. Pura Apl. 16 (1983) 61.

    Google Scholar 

  28. L. Palmisano, V. Augugliaro, M. Schiavello and A. Sclafani, J. Mol. Catal. 56 (1989) 284.

    Article  CAS  Google Scholar 

  29. V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra and F. Miano, Appl. Catal. 69 (1991) 323.

    Article  CAS  Google Scholar 

  30. V. Augugliaro, M.J. López-Muñoz, L. Palmisano and J. Soria, Appl. Catal.A 101 (1993) 7.

    Article  CAS  Google Scholar 

  31. I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima, J. Photochem. Photobiol.A 98 (1996) 79.

    Article  CAS  Google Scholar 

  32. A. Sclafani, L. Palmisano and M. Schiavello, J. Phys. Chem. 94 (1990) 829.

    Article  CAS  Google Scholar 

  33. A.P. Rivera, K. Tanaka and T. Hisanaga, Appl. Catal. B 3 (1993) 37.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, C., Solana, G., Rives, V. et al. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catalysis Letters 49, 235–243 (1997). https://doi.org/10.1023/A:1019025926206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019025926206

Navigation