Catalysis Letters

, Volume 52, Issue 1–2, pp 43–47 | Cite as

Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts

  • Jae-Sung Choi
  • Kwang-Ik Moon
  • Young Gul Kim
  • Jae Sung Lee
  • Cheol-Hyun Kim
  • David L. Trimm


CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation.

coke deposition Ni/Al2O3 catalysts carbon dioxide reforming Mn-modified Ni/Al2O3 catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Mizuno and M. Misono, Proc. Int. Symp. Chem. Fixation of Carbon Dioxide, Nagoya, Japan, 1991, p. 237.Google Scholar
  2. [2]
    D.E. Gushee, Chemtech (1980) 470.Google Scholar
  3. [3]
    J.R. Rostrup-Nielsen, Stud. Surf. Sci. Catal. 81 (1994) 25.Google Scholar
  4. [4]
    J. Nakamura and T. Uchijima, Shokubai 35 (1993) 478.Google Scholar
  5. [5]
    J.T. Richardson and S.A. Paripatyadar, Appl. Catal. 61 (1990) 293.CrossRefGoogle Scholar
  6. [6]
    Z.L. Zhang, V. Tsipouriari, A.M. Efstathiou and X.E. Verykios, J. Catal. 158 (1996) 51.CrossRefGoogle Scholar
  7. [7]
    P.D.F. Vernon, M.L.H. Green, A.K. Cheetham and A.T. Ashcroft, Catal. Today 13 (1992) 417.CrossRefGoogle Scholar
  8. [8]
    J.R. Rostrup-Nielsen and J.-H. Hansen, J. Catal. 144 (1993) 38.CrossRefGoogle Scholar
  9. [9]
    J.R. Rostrup-Nielsen, J. Catal. 85 (1984) 31.CrossRefGoogle Scholar
  10. [10]
    J.R. Rostrup-Nielsen, Stud. Surf. Sci. Catal. 68 (1991) 85.CrossRefGoogle Scholar
  11. [11]
    T. Borowiecki and A. Golebiowski, Catal. Lett. 25 (1994) 309.CrossRefGoogle Scholar
  12. [12]
    K.S.M. Bhatta and C.M. Dixon, Ind. Eng. Chem. Res. Dev. 8 (1969) 324.CrossRefGoogle Scholar
  13. [13]
    K.B. Mok, J.R.H. Ross and R.M. Sambrook, in: Preparation of Catalysts III, eds. G. Poncelet, P. Grange and P.A. Jacobs (Elsevier, Amsterdam, 1983) p. 291.Google Scholar
  14. [14]
    Q. Zhuang, Y. Qin and L. Chang, Appl. Catal. 70 (1991) 1.CrossRefGoogle Scholar
  15. [15]
    K.-I. Moon, C.-H. Kim, J.-S. Choi, S.-H. Lee, Y.G. Kim and J.S. Lee, Hwahak Konghak (J. Korean Inst. Chem. Eng.) 35(6) (1997) 890.Google Scholar
  16. [16]
    O. Yamazaki, T. Nozaki, K. Omata and K. Fujimoto, Chem. Lett. (1992) 1953.Google Scholar
  17. [17]
    T. Horiuchi, K. Sakuma, T. Fukui, Y. Kubo, T. Osaki and T. Mori, Appl. Catal. A 144 (1996) 111.CrossRefGoogle Scholar
  18. [18]
    D.L. Trimm, Catal. Rev. Sci. Eng. 16 (1977) 155.Google Scholar
  19. [19]
    R.T.K. Baker and P.S. Harris, in: Chemistry and Physics of Carbon, Vol. 14, eds. P.L. Walker, Jr. and P.A. Thrower (Dekker, New York, 1978) p. 33.Google Scholar
  20. [20]
    J.R. Rostrup-Nielson and D.L. Trimm, J. Catal. 108 (1977) 155.CrossRefGoogle Scholar
  21. [21]
    L.J.E. Hofer, E. Sterling and J.T. McCartney, J. Phys. Chem. 59 (1955) 1153.CrossRefGoogle Scholar
  22. [22]
    Y. Chen and J. Ren, Catal. Lett. 29 (1994) 39.CrossRefGoogle Scholar
  23. [23]
    A.H. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Jae-Sung Choi
    • 1
  • Kwang-Ik Moon
    • 1
  • Young Gul Kim
    • 1
  • Jae Sung Lee
    • 1
  • Cheol-Hyun Kim
    • 1
  • David L. Trimm
    • 1
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea

Personalised recommendations