Skip to main content
Log in

Acid‐catalyzed isobutane–isobutylene alkylation in liquid carbon dioxide solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Liquid carbon dioxide was studied as a solvent for the isobutane–isobutylene alkylation. The acid catalysts in the reaction were anhydrous HF (AHF), pyridinium–poly(hydrogen fluoride) complex (PPHF), concentrated sulfuric acid and trifluoromethanesulfonic acid (TFSA). The effect of the acid–hydrocarbon volume ratio, temperature and residence time on the alkylate quality were studied over the temperature range of 50 ⩾ T ⩾ 0 °C. Carbon dioxide as a competing weak base decreases the acidity of the system which parallels the alkylate quality. In the case of HF and TFSA catalysts, solvent CO2 increased the octane number of the alkylate product (RON 95.6 for HF‐ and 88.0 for TFSA‐catalyzed alkylation with CO2 solvent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Smith, ed., Supercritical Fluid Chromatography (Royal Society of Chemistry, London, 1988); R.D. Smith, B.W. Wright and C. Yonker, Anal. Chem. 60 (1988) 106R.

  2. M.A. McHugh and V.J. Krukonis, Supercritical Fluid Extraction — Principles and Practice (Butterworths, Boston, MA, 1993); T.L. Chester, J.D. Pinkston and D.E. Raynie, Anal. Chem. 66 (1994) 106R.

    Google Scholar 

  3. K.P. Johnston and C. Haynes, AIChE J. 33 (1987) 2017; S. Kim and K. Johnston, Ind. Eng. Chem. Res. 26 (1987) 1206; T.W. Randolph and C.J. Carlier, J. Phys. Chem. 96 (1992) 5146.

    Google Scholar 

  4. T.J. Bruno and J.F. Ely, Supercritical Fluid Technology — Reviews in Modern Theory and Applications (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  5. B. Minder, T. Mallat, K.H. Pickel, K. Steiner and A. Baiker, Catal. Lett. 34 (1995) 1; R. Hutter, D.C.M. Dutoit, T. Mallat, M. Schneider and A. Baiker, J. Chem. Soc. Chem. Commun. (1995) 163; J.K. Rice, E.D. Niemeyer, R.A. Dunbar and F.V. Bright, J. Am. Chem. Soc. 117 (1995) 5832; P.G. Jessop, Y. Hsiao, T. Ikariya and R. Noyori, J. Am. Chem. Soc. 118 (1996) 344.

    Google Scholar 

  6. S.H. Townsend and M.T. Klein, Fuel 64 (1985) 635; S.H. Townsend, M.A. Abraham, G.L. Huppert, M.T. Klein and S.C. Papsek, Ind. Eng. Chem. Res. 27 (1988) 143; H.H. Yang and C.A. Eckert, Ind. Eng. Chem. Res. 27 (1988) 2009.

    Google Scholar 

  7. J.F. Brennecke, in: Supercritical Fluid Engineering Science, Fundamentals and Applications, ACS Symp. Series, Vol. 514, eds. E. Kiran and J.F. Brennecke (Am. Chem. Soc., Washington, DC, 1993) pp. 201-219; P.G. Jessop, T. Ikariya and R. Noyori, Nature 368 (1994) 231; M.J. Burk, S. Feng, M.F. Gross and W. Tumas, J. Am. Chem. Soc. 117 (1995) 8277.

    Google Scholar 

  8. R.C. Reid, J.M. Prausnitz and B.E. Poling, The Properties of Gases and Liquids, 4th Ed. (McGraw-Hill, New York, 1987); S. Angus, B. Armstrong and K.M. De Reuck, eds., International Tables of the Fluid State, Vol. 3 (Pergamon, Oxford, 1976).

    Google Scholar 

  9. G.A. Olah, US Patent 5,073,674 (1991).

  10. A. Corma and A. Martinez, Catal. Rev. Sci. Eng. 35 (1993) 483.

    Google Scholar 

  11. G.A. Olah and Á. Molnár, Hydrocarbon Chemistry (Wiley, New York, 1995).

    Google Scholar 

  12. A. Corma, Chem. Rev. 95 (1995) 559.

    Google Scholar 

  13. A. Corma, A. Martínez and C. Martínez, J. Catal. 149 (1994) 52.

    Google Scholar 

  14. T. Okuhara, H. Yamashita, K. Na and M. Misono, Chem. Lett. (1994) 1451.

  15. G.A. Olah, P. Batamack, D. Deffieux, B. Török, Q. Wang, Á. Molnár and G.K.S. Prakash, Appl. Catal. A 146 (1996) 107; (b) G.A. Olah, G.K.S. Prakash, B. Török and M. Török, Catal. Lett. 40 (1996) 137; (c) L.A. Fan, I. Nakamura, S. Ishida and K. Fujimoto, Ind. Eng. Chem. Res. 36 (1997) 1458; (d) M.C. Clark and B. Subramaniam, Ind. Eng. Chem. Res. 37 (1998) 1243.

    Google Scholar 

  16. T. Huston, Jr. and R.S. Logan, Hydrocarbon Process. 54 (1975) 107.

    Google Scholar 

  17. K.W. Li, R.E. Eckert and L.F. Albright, Ind. Eng. Chem. Process Des. Dev. 9 (1970) 441.

    Google Scholar 

  18. S. Saito, Y. Sato, T. Ohwada and K. Shudo, J. Am. Chem. Soc. 116 (1994) 2312.

    Google Scholar 

  19. R.J. Gillespie and J. Lian, J. Am. Chem. Soc. 110 (1988) 6051.

    Google Scholar 

  20. L.F. Albright, in: Industrial and Laboratory Alkylations, ACS Symp. Series, Vol. 55 (Am. Chem. Soc., Washington, DC, 1977) ch. 8, p. 128; L.F. Albright, B.M. Doshi, M.A. Ferman and A. Ewo, in: Industrial and Laboratory Alkylations, ACS Symp. Series, Vol. 55 (Am. Chem. Soc., Washington, DC, 1977) ch. 6; L.F. Albright, B.M. Doshi and M.A. Ferman, in: Industrial and Laboratory Alkylations, ACS Symp. Series, Vol. 55 (Am. Chem. Soc., Washington, DC, 1977) ch. 7.

    Google Scholar 

  21. J.E. Hofmann and A. Schriesheim, J. Am. Chem. Soc. 84 (1962) 953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olah, G.A., Marinez, E., Török, B. et al. Acid‐catalyzed isobutane–isobutylene alkylation in liquid carbon dioxide solution. Catalysis Letters 61, 105–110 (1999). https://doi.org/10.1023/A:1019001712172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019001712172

Navigation