Skip to main content
Log in

Variations in the surface structure and composition of tungsten oxynitride catalyst caused by exposure to air

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A tungsten oxynitride (WN00.59 O0:24 ) catalyst with a specific surface area of 63.7 m2g-1has been prepared by the temperature-programmedreaction of WO3 with NH3 and characterized by elemental analysis, X-ray powder diffraction, N2 sorption, and X-ray photoelectron spectroscopy (XPS) in order to extensively investigate the textural variation of this material caused by exposure to ambient air. No noticeable changes in the bulk structure of tungsten oxynitride prepared here are caused by the sample storage in ambient conditions for a long period of time up to 80 days. However, its N2 BET surface area and total pore volume were found to severely decrease with increasing the period of time of exposure to air. The XPS depth profile measurements reveal that the amorphous tungsten trioxide (WO3 ) species is formed on the surface of tungsten oxynitride upon exposure to air, which results in the significant modification of the surface structure and composition of the oxynitride material. In contrast, no indications of other surface tungsten phases such as dioxidic, monooxidic, and oxynitridic species are detected. The overall results of this study strongly suggest that oxygen is mobileenough to diffuse into the surface or near-surface of the oxynitride lattice even in ambient conditions, leading to the surface WO3 formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Levy and M. Boudart, Science 181 (1973) 547.

    CAS  Google Scholar 

  2. L. Volpe and M. Boudart, Catal. Rev. Sci. Eng. 27 (1985) 515.

    CAS  Google Scholar 

  3. S.T. Oyama and G.L. Haller, Catalysis 5 (1982) 333.

    CAS  Google Scholar 

  4. S.T. Oyama, in: The Chemistry of Transition Metal Carbides and Nitrides, ed. S.T. Oyama (Chapman & Hall, Glasgow, 1996) ch. 1.

    Google Scholar 

  5. L.E. Toth, in: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  6. L. Volpe and M. Boudart, J. Phys. Chem. 90 (1986) 4874.

    Article  CAS  Google Scholar 

  7. M. Saito and R.B. Anderson, J. Catal. 63 (1980) 438.

    Article  CAS  Google Scholar 

  8. I. Kojima, E. Miyazaki, Y. Inoue and I. Yasumori, J. Catal. 73 (1982) 128.

    Article  CAS  Google Scholar 

  9. L. Leclercq, M. Provost, H. Pastor and G. Leclercq, J. Catal. 117 (1989) 384.

    Article  CAS  Google Scholar 

  10. S. Ramathan and S.T. Oyama, J. Phys. Chem. 99 (1995) 16365.

    Article  Google Scholar 

  11. G. Leclercq, M. Kamal, J.-F. Lamonier, L. Feigenbaum, P. Malfog and L. Leclercq, Appl. Catal. A 121 (1995) 169.

    Article  CAS  Google Scholar 

  12. M.J. Ledoux, C. Pham-Huu, A.P.E. York, E.A. Blekkan, P. Delporte and P. Del Gallo, in: The Chemistry of Transition Metal Carbides and Nitrides, ed. S.T. Oyama (Chapman & Hall, Glasgow, 1996) ch. 20.

    Google Scholar 

  13. A. Muller, V. Keller, R. Ducros and G. Maire, Catal. Lett. 35 (1995) 65.

    Article  CAS  Google Scholar 

  14. C.H. Shin, G. Bugli and G. Djega-Mariadassou, J. Solid State Chem. 95 (1991) 145.

    Article  CAS  Google Scholar 

  15. H.S. Kim, C.H. Shin, G. Bugli, M. Bureau-Tardy and G. Djega-Mariadassou, Appl. Catal. A 119 (1994) 223.

    Article  CAS  Google Scholar 

  16. G. Djega-Mariadassou, C.H. Shin and G. Bugli, J. Mol. Catal. A 141 (1999) 263.

    Article  CAS  Google Scholar 

  17. C.H. Jaggers, J.N. Michaels and A.M. Stacy, Chem. Mater. 2 (1990) 150.

    Article  CAS  Google Scholar 

  18. T.E. Lucy, T.P. St. Clair and S.T. Oyama, J. Mater. Res. 13 (1998) 2321.

    CAS  Google Scholar 

  19. L. Volpe and M. Boudart, J. Solid State Chem. 59 (1985) 332.

    Article  CAS  Google Scholar 

  20. JCPDS file Nos. 25-1257 and 37-571.

  21. X. Gouin, P. Marchand, P. L'Haridon and Y. Lauent, J. Solid State Chem. 109 (1994) 175.

    Article  CAS  Google Scholar 

  22. F.J. Himpsel, J.F. Morar, F.R. McFeely and R.A. Pollak, Phys. Rev. B 30 (1984) 7236.

    Article  CAS  Google Scholar 

  23. J.F. Morar, F.J. Himpsel, J.L. Hughes, J.L. Jordan, F.R. McFeely, and G. Hollinger, J. Vac. Sci. Technol. A 3 (1985) 1477.

    Article  CAS  Google Scholar 

  24. M. Nagai and K. Kishida, Appl. Surf. Sci. 70 (1993) 759.

    Article  Google Scholar 

  25. R.J. Colton and J.W. Rabalais, Inorg. Chem. 15 (1976) 236.

    Article  CAS  Google Scholar 

  26. A. Keller, M. Cheval, F. Maire, P. Wehrer, R. Ducros and G. Maire, Catal. Today 17 (1993) 493.

    Article  CAS  Google Scholar 

  27. A. Keller, M. Cheval, M. Vayer, R. Ducros and G. Maire, Catal. Lett. 10 (1991) 137.

    Article  CAS  Google Scholar 

  28. T.L. Barr, in: Modern ESCA: The Principles and Practice of X-ray Photoelectron Spectroscopy (CRC Press, Boca Raton, 1995).

    Google Scholar 

  29. G. Djega-Mariadassou, M. Boudart, G. Bugli and C. Sayag, Catal. Lett. 31 (1995) 411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, D., Chang, T. & Shin, C. Variations in the surface structure and composition of tungsten oxynitride catalyst caused by exposure to air. Catalysis Letters 67, 163–169 (2000). https://doi.org/10.1023/A:1019001102003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019001102003

Navigation