Skip to main content
Log in

Fluorometric Study of the Molecular States of 2,5-Diphenyloxazole in Ground Mixtures with γ-Cyclodextrin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Molecular states of 2,5-diphenyloxazole (PPO) were investigated in ground mixtures with -γ-cyclodextrin (γ-CD). Crystalline PPO gradually became amorphous upon grinding in the presence of γ-CD. Solid-state fluorescence spectra of the ground mixtures showed that the fluorescence emission peak due to PPO crystals was reduced in intensity with an increasing duration of grinding. A new fluorescence peak attributed to PPO excimer appeared at a longer wavelength. Results of the time-resolved fluorescence study indicated that the cogrinding caused an increase in the portion of PPO excimer in the γ-CD ground mixture. On the other hand, only a small portion of excimer was formed in ground mixtures with (β-CD, which has a smaller cavity than γ-CD. These results suggest that cogrinding of PPO with γ-CD caused two PPO molecules to be included in the γ-CD cavity, contributing to excimer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Nakai. Molecular behavior of medicinals in ground mixtures with microcrystalline cellulose. Drug Dev. Ind. Pharm. 12:1017–1039 (1986).

    Google Scholar 

  2. T. Oguchi, K. Terada, K. Yamamoto, and Y. Nakai. Freezedrying of drug-additive binary systems. I. Effects of freezing condition on the crystallinity. Chem. Pharm. Bull. 37:1881–1885 (1989).

    Google Scholar 

  3. Y. Nakai, K. Yamamoto, K. Terada, and M. Sakai. Application of photoacoustic spectroscopy for quantitative analysis of drugs in the pharmaceutical preparations. Yakugaku Zasshi 108:1107–1109 (1988).

    Google Scholar 

  4. R. F. Steiner. Dynamic fluorescence methods and their applications to biochemistry. Protein Nucleic Acid Enzyme 37:1415–1432 (1992).

    Google Scholar 

  5. J. Nishijo, M. Yasuda, M. Nagai, and M. Sugiura. Inclusion mode of 8-anilino-1-naphthalenesulfonate (ANS) in the ANS-β-cyclodextrin complex. Bull. Chem. Soc. Jpn. 65:2869–2871 (1992).

    Google Scholar 

  6. T. Soujanya, T. S. R. Krishna, and A. Samanta. The nature of 4-aminophthalimide-cyclodextrin inclusion complexes. J. Phys. Chem. 96:8544–8548 (1992).

    Google Scholar 

  7. A. Ueno, S. Minato, and T. Osa. Host-guest sensors of 6A, 6B-, 6A, 6C-, 6A, 6D-, and 6A, 6E-bis(2-naphthylsulfonyl)-γ-cyclodextrins for detecting organic compounds by fluorescence enhancement. Anal. Chem. 64:1154–1157 (1992).

    Google Scholar 

  8. A. Nakamura, K. Saitoh, and F. Toda. Fluctuation in structure of inclusion complexes of cyclodextrins with fluorescent probes. Chem. Phys. Lett. 187:110–115 (1991).

    Google Scholar 

  9. J. B. Zung, A. M. de la Pena, T. T. Ndou, and I. M. Warner. Influence of alcohol addition on the γ-CD:pyrene complex. J. Phys. Chem. 95:6701–6706 (1991).

    Google Scholar 

  10. F. V. Bright, G. C. Catena, and J. Huang. Evidence for lifetime distributions in cyclodextrin inclusion complexes. J. Am. Chem. Soc. 112:1343–1346 (1990).

    Google Scholar 

  11. V. Ramamurphy, D. F. Eaton, and J. V. Casper. Photochemical and photophysical studies of organic molecules included within zeolites. Acc. Chem. Res. 25:299–307 (1992).

    Google Scholar 

  12. L. F. V. Ferreira, M. R. Freixo, and A. R. Garcia. Photochemistry on surface: Fluorescence emission quantum yield evaluation of dyes adsorbed on microcrystalline cellulose. J. Chem. Soc. Faraday Trans. I 88:15–22 (1992).

    Google Scholar 

  13. T. Fujii, A. Ishii, H. Satozono, S. Suzuki, M. Che, and M. Anpo. Photophysics on solid surfaces. Time-resolved fluorescence spectra of pyrene adsorbed on calcinated vycor glass. Bull. Chem. Soc. Jpn. 63:2475–2480 (1990).

    Google Scholar 

  14. X. Liu, K.-K. Iu, and J. K. Thomas. Photophysical properties of pyrene in zeolites. J. Phys. Chem. 93:4120–4128 (1989).

    Google Scholar 

  15. T. Fujii, E. Shimizu, and S. Suzuki. Photophysics at solid surfaces. Evidence of dimer formation and polarization of monomer and excimer fluorescences of pyrene in the adsorbed state on silica-gel surfaces. J. Chem. Soc. Faraday Trans. I 84:4387–4395 (1988).

    Google Scholar 

  16. G. J. Burrell and R. J. Hurtubise. Extended luminescence calibration curves for studying surface interactions in solid-surface luminescence analysis. Anal. Chem. 59:965–970 (1987).

    Google Scholar 

  17. S. M. Ramasamy, V. P. Senthilnathan, and R. J. Hurtubise. Determination of room-temperature fluorescence and phosphorescence quantum yields for compounds adsorbed on solid surfaces. Anal. Chem. 58:612–616 (1986).

    Google Scholar 

  18. S. L. Suib and A. Kostapapas. Intermolecular pyrene excimer formation in zeolites. Decay parameters and ground-state association. J. Am. Chem. Soc. 106:7705–7710 (1984).

    Google Scholar 

  19. R. K. Bauer, R. Borenstein, P. de Mayo, K. Okada, M. Rafalska, W. R. Ware, and K. C. Wu. Surface photochemistry. Translational motion of organic molecules adsorbed on silica gel and its consequence. J. Am. Chem. Soc. 104:4635–4644 (1982).

    Google Scholar 

  20. A. K. Mishra, M. Sato, H. Hiratsuka, and H. Shizuka. Dual emission from ion pairs produced by excited-state proton transfer in the naphthol-amine system at 77 K. Steric orientation of contact and separated ion pair. J. Chem. Soc. Faraday Trans. 87:1311–1319 (1991).

    Google Scholar 

  21. A. Matsuyama and H. Baba. Fluorescence and phosphorescence spectra of α-naphthol in relation to hydrogen bonding and proton transfer. Bull. Chem. Soc. Jpn. 44:1162–1164 (1971).

    Google Scholar 

  22. J. Ferguson. Excited dimer (excimer) luminescence from aromatic molecules in crystalline cyclohexane. J. Chem. Phys. 43:306–307 (1965).

    Google Scholar 

  23. P. Avis and G. Porter. Effect of concentration on the absorption and fluorescence spectra of pyrene in a solid solution of poly(methyl methacrylate). J. Chem. Soc. Faraday Trans. 2 70:1057–1065 (1974).

    Google Scholar 

  24. M. S. Wrighton, D. S. Ginley, and D. L. Morse. A technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 78:2229–2233 (1974).

    Google Scholar 

  25. T. Fujii, T. Mabuchi, H. Kitamura, O. Kawauchi, N. Negishi, and M. Anpo. Fluorescence spectra of 1-naphthol during the sol-gel process of a mixed aluminum-silicon alkoxide (Si:Al=94:6). Bull. Chem. Soc. Jpn. 65:720–727 (1992).

    Google Scholar 

  26. A. Villari, N. Micali, M. Fresta, and G. Puglisi. Simultaneous spectrophotometric determination in solid phase of aspirin and its impurity salicylic acid in pharmaceutical formulations. J. Pharm. Sci. 81:895–898 (1992).

    Google Scholar 

  27. I. B. Berlman. Transient dimer formation by 2,5-diphenyloxazole. J. Chem. Phys. 34:1083–1084 (1961).

    Google Scholar 

  28. R. A. Agbaria and D. Gill. Extended 2,5-diphenyloxazole-γ-cyclodextrin aggregates emitting 2,5-diphenyloxazole excimer fluorescence. J. Phys. Chem. 92:1052–1055 (1988).

    Google Scholar 

  29. K. Kinoshita and K. Mihashi. Photofluorometry, Application for Biological Science, Gakkai Shuppan Center, Tokyo, 1983.

    Google Scholar 

  30. J. Yguerabide and M. Burton. Luminescence decay times: Concentration effects. J. Chem. Phys. 37:1757–1774 (1962).

    Google Scholar 

  31. W. Saenger. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19:344–362 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Oguchi, T., Yonemochi, E. et al. Fluorometric Study of the Molecular States of 2,5-Diphenyloxazole in Ground Mixtures with γ-Cyclodextrin. Pharm Res 11, 331–336 (1994). https://doi.org/10.1023/A:1018984230791

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018984230791

Navigation