Catalysis Letters

, Volume 43, Issue 1–2, pp 71–77

The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4

  • Y.H. Hu
  • E. Ruckenstein
Article

Abstract

A NiO/MgO catalyst prepared by impregnation, which reduced in H2 had very high CO yield and stability in CO2 reforming of methane, was investigated by XPS, XRD, BET and pulse-MS response. This catalyst was compared to that obtained by mechanical mixing of powders of the two oxides. It was found that the entire NiO formed a solid solution with MgO in the former catalyst, while only a fraction of NiO formed a solid solution with MgO in the latter one. BET revealed that, in contrast to NiO and MgO, the NiO/MgO catalyst prepared by impregnation had a high stability to sintering, because its surface area hardly changed during calcination from 1.5 to 20 h at 800°C. In the same catalyst, a surface enrichment in MgO, which was greater after than before reduction, was detected. Compared to MgO or NiO, this catalyst had a lower Mg(2p) and a higher Ni(2p3/2) binding energy. This indicates that electron transfer from NiO to MgO took place, which, increasing the binding between the two oxides, might be responsible for the resistance of the solid solution to sintering. Because of the interactions between Ni and Mg, the clustering of Ni, which stimulates carbon deposition is inhibited. This explains the high stability of the CO yield in the CO2 reforming of methane over the NiO/MgO catalyst prepared by impregnation. The pulse-MS response suggested that the decompositions of CO2 to CO and O and of CH4 to C and H are involved in the reaction mechanism of CO2 reforming of methane over the reduced NiO-MgO solid solution catalyst.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature 352 (1991) 225.CrossRefGoogle Scholar
  2. [2]
    J.T. Richardson and S.A. Paripatyadar, Appl. Catal. 61 (1990) 293.CrossRefGoogle Scholar
  3. [3]
    O. Yamazaki, T. Nozaki, K. Omata and K. Fujimota, Chem. Lett. (1992) 1953.Google Scholar
  4. [4]
    A.M. Gadalla and M.E. Sommer, Chem. Eng. Sci. 44 (1989) 2825.CrossRefGoogle Scholar
  5. [5]
    A.M. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.CrossRefGoogle Scholar
  6. [6]
    J.R. Rostrup-Nielsen and J.-H.B. Hansen, J. Catal. 144 (1993) 38.CrossRefGoogle Scholar
  7. [7]
    G.J. Kim, D.S. Cho, K.H. Kim and J.H. Kim, Catal. Lett. 28 (1994) 41.CrossRefGoogle Scholar
  8. [8]
    J.R. Rostrup-Nielsen, Stud. Surf. Sci. Catal. 36 (1988) 73.CrossRefGoogle Scholar
  9. [9]
    J.R. Rostrup-Nielsen, J. Catal. 85 (1984) 31.CrossRefGoogle Scholar
  10. [10]
    Z. Zhang and X.E. Verykios, J. Chem. Soc. Chem. Commun. (1995) 71.Google Scholar
  11. [11]
    E. Ruckenstein and Y.H. Hu, J. Catal. 161 (1996) 55.CrossRefGoogle Scholar
  12. [12]
    E. Ruckenstein and Y.H. Hu, Appl. Catal. 133 (1995) 149.CrossRefGoogle Scholar
  13. [13]
    Y.H. Hu and E. Ruckenstein, Catal. Lett. 36 (1996) 145.CrossRefGoogle Scholar
  14. [14]
    E. Ruckenstein and Y.H. Hu, Appl. Catal., in press.Google Scholar
  15. [15]
    H.B. Nussler and O. Kubaschewski, Z. Phys. Chem. (NF) 121 (1980) 187.Google Scholar
  16. [16]
    E.G. Vrieland and P.W. Selwood, J. Catal. 3 (1964) 539.CrossRefGoogle Scholar
  17. [17]
    A. Cimino, M. Schiavello and F.S. Stone, Discussion Faraday Soc. 41 (1966) 350.CrossRefGoogle Scholar
  18. [18]
    A.F. Shestakov, V.A. Matishak, A.A. Kadushin and O.V. Krylov, Kinet.Catal. 20 (1979) 151.Google Scholar
  19. [19]
    A. Zecchina, G. Spoto and S. Coluccia, J. Chem. Soc. Faraday I 80 (1984) 1875.CrossRefGoogle Scholar
  20. [20]
    A. Zecchina, G. Spoto and S. Coluccia, J. Chem. Soc. Faraday I 80 (1984) 1891.CrossRefGoogle Scholar
  21. [21]
    F. Arena, A. Parmaliana, N. Mondello, F. Frusteri and N. Giordano, Langmuir 7 (1991) 1555.CrossRefGoogle Scholar
  22. [22]
    A. Parmaliana, F. Arena, F. Frusteri and N. Giordano, J. Chem. Soc. Faraday Trans. 86 (1990) 2663.CrossRefGoogle Scholar
  23. [23]
    G.C. Bond and S.P. Sarsam, Appl.Catal. 38 (1988) 365.CrossRefGoogle Scholar
  24. [24]
    T. Borowiecki, Appl. Catal. 10 (1984) 273.CrossRefGoogle Scholar
  25. [25]
    Y.H.Hu and E. Ruckenstein, J. Catal. 163 (1996) 306.CrossRefGoogle Scholar
  26. [26]
    Y.H. Hu and E. Ruckenstein, Langmuir, submitted.Google Scholar
  27. [27]
    F. Arena, B.A. Horrell, D.L. Cocke, A. Parmaliana and N. Giordano, J. Catal. 132 (1991) 58; S. Narayanan and G. Sreekanth, J. Chem. Soc. Faraday Trans. I 85 (1989) 3785.CrossRefGoogle Scholar
  28. [28]
    E.P. Barret, L.G. Joyner and P.H. Halenda, J. Am. Chem. Soc. 73 (1951) 373.CrossRefGoogle Scholar
  29. [29]
    K.S. Kimand N. Winograd, Surf. Sci. 43 (1974) 625.CrossRefGoogle Scholar
  30. [30]
    J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 306 (1994) 269.CrossRefGoogle Scholar
  31. [31]
    F. Arena, F. Frusteri, A. Parmaliana, L. Plyasova and A.N. Shmakov, J. Chem. Soc. Faraday Trans. 92 (1996) 469.CrossRefGoogle Scholar
  32. [32]
    X.D. Peng and M.A. Barteau, Surf. Sci. 233 (1990) 283; Catal. Lett. 7 (1990) 395.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Y.H. Hu
  • E. Ruckenstein

There are no affiliations available

Personalised recommendations