Skip to main content
Log in

Multiwavelet approximation methods for pseudodifferential equations on curves. Stability and convergence analysis

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We develop a stability and convergence analysis of Galerkin–Petrov schemes based on a general setting of multiresolution generated by several refinable functions for the numerical solution of pseudodifferential equations on smooth closed curves. Particular realizations of such a multiresolution analysis are trial spaces generated by biorthogonal wavelets or by splines with multiple knots. The main result presents necessary and sufficient conditions for the stability of the numerical method in terms of the principal symbol of the pseudodifferential operator and the Fourier transforms of the generating multiscaling functions as well as of the test functionals. Moreover, optimal convergence rates for the approximate solutions in a range of Sobolev spaces are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.K. Alpert, A class of bases in L 2 for the sparse representation of integral operators, SIAM J. Math. Anal. 24(1) (1993) 246-262.

    Article  MATH  MathSciNet  Google Scholar 

  2. D.N. Arnold and W.L. Wendland, On the asymptotic convergence of collocation methods, Math. Comp. 41 (1983) 383-397.

    Article  MATH  MathSciNet  Google Scholar 

  3. D.N. Arnold and W.L. Wendland, The convergence of spline collocation for strongly elliptic equations on curves, Numer. Math. 47 (1985) 317-341.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990) 1550-1562.

    Article  MATH  MathSciNet  Google Scholar 

  5. A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93(453) (1991).

  6. C.K. Chui and J. Lian, A study of orthonormal multi-wavelets, CAT Report 351 (1995).

  7. W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math. 63 (1992) 315-344.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations: I. Stability and convergence, Math. Z. 215 (1994) 583-620.

    MATH  MathSciNet  Google Scholar 

  9. C. De Boor, R.A. DeVore and A. Ron, Approximation from shift-invariant subspaces of L 2(ℝ)d, Trans. Amer. Math. Soc. 341(2) (1994) 787-806.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1993).

    Google Scholar 

  11. R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1998) 397-414.

    Article  MathSciNet  Google Scholar 

  12. J. Elschner, Singular Ordinary Differential Equations and Pseudodifferential Equations, Lecture Notes in Mathematics 1128 (Springer, Berlin, 1985).

    Google Scholar 

  13. T.N.T. Goodman and S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc. 342(1) (1994) 307-324.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.Q. Jia and J. Lei, Approximation by multiinteger translates of functions having global support, J. Aprox. Theory 72(2-23) (1993).

  15. R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of prewavelets II: Powers of two, in: Curves and Surfaces, eds. P. Laurent, A. Le Méhanté and L.L. Schumaker (Academic Press, New York, 1991) pp. 209-246.

    Google Scholar 

  16. W. McLean and S. Prössdorf, Boundary element collocation methods using splines with multiple knots, Numer. Math. 74 (1996) 419-451.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Mikhlin and S. Prössdorf, Singular Integral Operators(Springer, Berlin, 1986).

    Google Scholar 

  18. G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx. 13 (1997) 221-244.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Prößdorf, Ein Lokalisierungsprinzip in der Theorie der Spline-Approximationen und einige Anwendungen, Math. Nachr. 119 (1984) 239-255.

    MATH  MathSciNet  Google Scholar 

  20. S. Prössdorf and A. Rathsfeld, A spline collocation method for singular integral equations with piecewise continuous coefficients, Integral Equations Operator Theory 7 (1984) 536-560.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Prössdorf and G. Schmidt, A finite element collocation method for singular integral equations, Math. Nachr. 100 (1981) 33-60.

    MATH  MathSciNet  Google Scholar 

  22. S. Prössdorf and R. Schneider, Spline approximation methods for multidimensional periodic pseudodifferential equations, Integral Equations Operator Theory 15 (1992) 626-672.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations(Akademie Verlag, Berlin, 1991, and Birkhäuser, Boston, 1991).

    Google Scholar 

  24. J. Saranen and W.L. Wendland, On the asymptotic convergence of collocation methods with spline functions of even degree, Math. Comp. 45 (1985) 93-108.

    Article  MathSciNet  Google Scholar 

  25. G. Schmidt, The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves, Z. Anal. Anwendungen 3(4) (1984) 371-384.

    MATH  MathSciNet  Google Scholar 

  26. S. Strela and G. Strang, Orthogonal multiwavelets with vanishing moments, preprint.

  27. S. Strela and G. Strang, Biorthogonal multiwavelets and finite elements, preprint.

  28. U. Szyska, Splinekollokationsmethoden für singuläre Integralgleichungen auf geschlossenen Kurven in L 2, in: Seminar Analysis: Operator Equations and Numerical Analysis 1988/89, eds. S. Prössdorf and B. Silbermann (Akademie der Wissenschaften der DDR, 1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prössdorf, S., Schult, J. Multiwavelet approximation methods for pseudodifferential equations on curves. Stability and convergence analysis. Advances in Computational Mathematics 9, 145–171 (1998). https://doi.org/10.1023/A:1018977120831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018977120831

Navigation