Skip to main content
Log in

Solid-State Nuclear Magnetic Resonance Spectroscopy: Theory and Pharmaceutical Applications

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The theory of solid-state nuclear magnetic resonance (NMR) spectroscopy is reviewed, with specific discussions of magnetic interactions in the solid state. Each magnetic interaction (Zeeman, dipole-dipole, chemical-shift, spin–spin, and quadrupolar) is addressed and manifestations of these interactions in the solid state NMR spectrum are explained. The techniques of high-power decoupling, magic-angle spinning, and cross-polarization, used to acquire highly resolved solid-state NMR spectra, are also illustrated. Application of solid-state NMR to pharmaceutical problem solving and methods development is then briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Burger and R. Ramberger. On the polymorphism of pharmaceuticals and other molecular crystals. I. Mikrochim. Acta (Wien) II:259–271 (1979); A. Burger and R. Ramberger. On the polymorphism of pharmaceuticals and other molecular crystals. II. Mikrochim. Acta (Wien) II:273–316 (1979).

    Google Scholar 

  2. J. Haleblian and W. McCrone. Pharmaceutical applications of polymorphism. J. Pharm. Sci. 58:911–929 (1969).

    Google Scholar 

  3. M. Otsuka, T. Matsumoto, and N. Kaneniwa. Effects of the mechanical energy of multi-tableting compression on the polymorphic transformations of chlorpropamide. J. Pharm. Pharmacol. 41:665–669 (1989).

    Google Scholar 

  4. K. A. Connors, G. L. Amidon, and V. J. Stella. Chemical Stability of Pharmaceuticals, John Wiley & Sons, New York, 1986.

    Google Scholar 

  5. M. Karplus. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85:2870–2871 (1963).

    Google Scholar 

  6. T. C. Farrar and E. D. Becker. Pulse and Fourier Transform NMR, Academic Press, New York, 1971.

    Google Scholar 

  7. E. R. Andrew, A. Bradbury, and R. G. Eades. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–1803 (1959).

    Google Scholar 

  8. E. R. Andrew. The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog. Nucl. Magnet. Reson. Spectrosc. 8:1–39 (1972).

    Google Scholar 

  9. A. Pines, M. G. Gibby, and J. S. Waugh. Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56:1776–1777 (1972); A. Pines, M. G. Gibby, and J. S. Waugh. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59:569–590 (1973).

    Google Scholar 

  10. A. Salvetti. Newer ACE inhibitors, a look at the future. Drugs 40:800–828 (1990).

    Google Scholar 

  11. W. T. Dixon, J. Schaefer, M. D. Sefcik, E. O. Stejskal, and R. A. McKay. Total suppression of sidebands in CPMAS carbon-13 NMR. J. Magnet. Reson. 49:341–345 (1982).

    Google Scholar 

  12. C. A. Fyfe. Solid State NMR for Chemists, CFC Press, Guelph, 1983.

    Google Scholar 

  13. S. R. Hartmann and E. L. Hahn. Nuclear double resonance in the rotating frame. Phys. Rev. 128:2042–2053 (1962).

    Google Scholar 

  14. R. J. Abraham, J. Fisher, and P. Loftus. Introduction to NMR Spectroscopy, John Wiley & Sons, New York, 1988, pp. 84–86.

    Google Scholar 

  15. T. C. Farrar and E. D. Becker. Pulse and Fourier Transform NMR, Academic Press, New York, 1971, pp. 20–22.

    Google Scholar 

  16. J. Schaefer, E. O. Stejskal, and R. Buchdahl. High-resolution carbon-13 nuclear magnetic resonance study of some solid, glassy polymers. Macromolecules 8:291–296 (1975).

    Google Scholar 

  17. P. Granger. Multinuclear NMR referencing. Appl. Spectrosc. 42:1–3 (1988).

    Google Scholar 

  18. W. L. Earl and D. L. VanderHart. Measurement of 13C chemical shifts in solids. J. Magnet. Reson. 48:35–54 (1982).

    Google Scholar 

  19. Bruker Instruments, Inc. The CP/MAS Accessory Product Description Manual, 1987.

  20. J. S. Frye and G. E. Maciel. Setting the magic angle using a quadrupolar nuclide. J. Magnet. Reson. 48:125–131 (1982).

    Google Scholar 

  21. A. Kubo and C. A. McDowell. Setting of the magic angle for 31P MAS NMR using zinc(II) bis(O,O'-diethyldithiophosphate). J. Magn. Reson. 92:409–410 (1991).

    Google Scholar 

  22. G. C. Campbell, R. C. Crosby, and J. F. Haw. 13C chemical shifts which obey the Curie law in CP/MAS NMR spectra. The first CP/MAS NMR chemical-shift thermometer. J. Magnet. Reson. 69:191–195 (1986).

    Google Scholar 

  23. B. Wehrle, F. Aguilar-Parrilla, and H.-H. Limbach. A novel 15N chemical-shift NMR thermometer for magic angle spinning experiments. J. Magnet. Reson. 87:584–591 (1990).

    Google Scholar 

  24. S. R. Byrn, G. Gray, R. R. Pfeiffer, and J. Frye. Analysis of solid-state carbon-13 NMR spectra of polymorphs (benoxaprofen and nabilone) and pseudopolymorphs (cefazolin). J. Pharm. Sci. 74:565–588 (1985).

    Google Scholar 

  25. S. R. Byrn, P. A. Sutton, B. Tobias, J. Frye, and P. Main. The crystal structure, solid-state NMR spectra, and oxygen reactivity of five crystal forms of prednisolone tert-butylacetate. J. Am. Chem. Soc. 110:1609–1614 (1988).

    Google Scholar 

  26. H. Martinez, S. R. Byrn, and R. R. Pfeiffer. Solid-state chemistry and crystal structure of cefaclor dihydrate. Pharm. Res. 7:147–153 (1990).

    Google Scholar 

  27. S. R. Byrn, A. T. McKenzie, M. M. A. Hassan, and A. A. Al-Badr. Conformation of glyburide in the solid state and in solution. J. Pharm. Sci. 75:596–600 (1986).

    Google Scholar 

  28. R. A. Fletton, R. K. Harris, A. M. Kenwright, R. W. Lancaster, K. J. Packer, and N. Sheppard. A comparative spectroscopic investigation of three pseudopolymorphs of testosterone using solid-state IR and high-resolution solid-state NMR. Spectrochim. Acta 43A:1111–1120 (1987).

    Google Scholar 

  29. R. K. Harris, B. J. Say, R. R. Yeung, R. A. Fletton, and R. W. Lancaster. Cross-polarization/magic-angle spinning NMR studies of polymorphism: Androstanolone. Spectrochim. Acta 45A:465–469 (1989).

    Google Scholar 

  30. R. A. Fletton, R. W. Lancaster, R. K. Haris, A. M. Kenwright, K. J. Packer, D. N. Waters, and A. Yeadon. A comparative spectroscopic investigation of two polymorphs of 4′-methyl-2′-nitroacetanilide using solid-state infrared and high-resolution solid-state nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Trans. II 1705–1709 (1986).

    Google Scholar 

  31. R. K. Harris, A. M. Kenwright, B. J. Say, R. R. Yeung, R. A. Fletton, R. W. Lancaster, and G. L. Hardgrove, Jr. Crosspolarization/magic-angle spinning NMR studies of polymorphism: Cortisone acetate. Spectrochim. Acta 46A:927–935 (1990).

    Google Scholar 

  32. J. J. Gerber, J. G. vanderWatt, and A. P. Lötter. Physical characterization of solid forms of cyclopenthiazide. Int. J. Pharm. 73:137–145 (1991).

    Google Scholar 

  33. H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. DeVincentis, G. Lewen, and A. W. Newman. Physical characterization of pharmaceutical solids. Pharm. Res. 8:963–973 (1991).

    Google Scholar 

  34. C. Doherty and P. York. Frusemide crystal forms; Solid state and physicochemical analyses. Int. J. Pharm. 47:141–155 (1988).

    Google Scholar 

  35. R. G. Ball and M. W. Baum. A spectroscopic and crystallographic investigation of the structure and hydrogen bonding properties of the chiral leukotriene antagonist MK-679 as compared to its racemate MK-571. J. Org. Chem. 57:801–803 (1992).

    Google Scholar 

  36. E. B. Vadas, P. Toma, and G. Zografi. Solid-state phase transitions initiated by water vapor sorption of crystalline L-660, 711, a leukotriene D4 receptor antagonist. Pharm. Res. 8:148–155 (1991).

    Google Scholar 

  37. M. Stoltz, D. W. Oliver, P. L. Wessels, and A. A. Chalmers. High-resolution solid-state carbon-13 nuclear magnetic resonance spectra of mofebutazone, phenylbutazone, and oxyphenbutazone in relation to x-ray crystallographic data. J. Pharm. Sci. 80:357–362 (1991).

    Google Scholar 

  38. R. Glaser and K. Maartmann-Moe. X-ray crystallography studies and CP-MAS 13C NMR spectroscopy on the solid-state stereochemistry of diphenhydramine hydrochloride, an antihistaminic drug. J. Chem. Soc. Perkin Trans. 2:1205–1210 (1990).

    Google Scholar 

  39. M. C. Etter and G. M. Vojta. The use of solid-state NMR and x-ray crystallography as complementary tools for studying molecular recognition. J. Mol. Graph. 7:3–11 (1989).

    Google Scholar 

  40. K. D. M. Harris and J. M. Thomas. Probing polymorphism and reactivity in the organic solid state using 13C NMR spectroscopy: Studies of p-formyl-trans-cinnamic acid. J. Solid State Chem. 93:197–205 (1991).

    Google Scholar 

  41. L. Frydman, A. C. Olivieri, L. E. Diaz, B. Frydman, A. Schmidt, and S. Vega. A 13C solid-state NMR study of the structure and the dynamics of the polymorphs of sulphanilamide. Mol. Phys. 70:563–579 (1990).

    Google Scholar 

  42. R. K. Harris. Quantitative aspects of high-resolution solid-state nuclear magnetic resonance spectroscopy. Analyst 110:649–655 (1985).

    Google Scholar 

  43. R. Suryanarayanan and T. S. Wiedmann. Quantitation of the relative amounts of anhydrous carbamazepine (C15H12N2O) and carbamazepine dihydrate (C15H12N2O · 2H2O) in a mixture by solid-state nuclear magnetic resonance (NMR). Pharm. Res. 7:184–187 (1990).

    Google Scholar 

  44. H. D. W. Hill, A. P. Zens, and J. Jacobus. Solid-state NMR spectroscopy. Distinction of diastereomers and determination of optical purity. J. Am. Chem. Soc. 101:7090–7091 (1979).

    Google Scholar 

  45. L. E. Díaz, F. Morin, C. L. Mayne, D. M. Grant, and C. Chang. Conformational analysis of DL-, L-, and D-methionine by solid-state 13C NMR spectroscopy. Magnet. Reson. Chem. 24:167–170 (1986).

    Google Scholar 

  46. K. V. Andersen, H. Bildsøe, and H. J. Jakobsen. Determination of enantiomeric purity from solid-state 31P MAS NMR of organophosphorus compounds. Magnet. Reson. Chem. 28:S47–S51 (1990).

    Google Scholar 

  47. N. R. Jagannathan. High-resolution solid-state carbon-13 nuclear magnetic resonance study of acetaminophen: A common analgesic drug. Curr. Sci. 56:827–830 (1987).

    Google Scholar 

  48. C. Chang, L. E. Díaz, F. Morin, and D. M. Grant. Solid-state 13C NMR study of drugs: Aspirin. Magnet. Res. Chem. 24:768–771 (1986).

    Google Scholar 

  49. L. E. Díaz, L. Frydman, A. C. Olivieri, and B. Frydman. Solid state NMR of drugs: Soluble aspirin. Anal. Lett. 20:1657–1666 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugay, D.E. Solid-State Nuclear Magnetic Resonance Spectroscopy: Theory and Pharmaceutical Applications. Pharm Res 10, 317–327 (1993). https://doi.org/10.1023/A:1018967717781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018967717781

Navigation