Skip to main content
Log in

Validation of a Variable Direction Hysteresis Minimization Pharmacodynamic Approach: Cardiovascular Effects of Alfentanil

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

An important goal in therapeutics is the quantitative prediction of drug effects. Although several comprehensive pharmacodynamic models have been proposed, relatively few of these have attempted to assess objectively the application of the models to predict pharmacologic responses. A variable-direction hysteresis minimization approach was proposed recently that allowed the pharmacodynamics of drugs to be modeled using information about drug input. The application and validation of this approach are demonstrated using the pharmacodynamic effect of alfentanil, a short-acting narcotic analgesic agent, in New Zealand White rabbits. A parameter is proposed to assess the ability of the pharmacodynamic model to predict responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clin. Pharmacol. Ther. 25:358–371 (1979).

    Google Scholar 

  2. E. Fuseau and L. B. Sheiner. Simultaneous modeling of pharmacokinetics and pharmacodynamics with a nonparametric pharmacodynamic model. Clin. Pharmacol. Ther. 35:733–741 (1984).

    Google Scholar 

  3. P. Veng-Pedersen, J. W. Mandema, and M. Danhof. A system approach to pharmacodynamics. III. an algorithm and computer program COLAPS, for pharmacodynamic modelling. J. Pharm. Sci. 80:488–495 (1991).

    Google Scholar 

  4. P. Veng-Pedersen and N. B. Modi. Pharmacodynamic system analysis of the biophase level predictor and transduction function. J. Pharm. Sci. 81:925–934 (1992).

    Google Scholar 

  5. B. Kay and B. Pleuvry. Human volunteer studies of alfentanyl (R39209), a new short-acting narcotic analgesic. Anaesthesia 35:952–956 (1980).

    Google Scholar 

  6. J. O. Arndt, B. Bednarski, and C. Parasher. Alfentanil's analgesic, respiratory, and cardiovascular actions in relation to dose and plasma concentration in unanesthetized dogs. Anesthesiology 64:345–352 (1986).

    Google Scholar 

  7. H. Askitopoulou, J. G. Whitwam, S. Sapsed, and M. K. Chakrabarti. Dissociation between the effects of fentanyl and alfentanil on spontaneous and reflexly evoked cardiovascular responses in the dog. Br. J. Anaesth. 55:155–161 (1983).

    Google Scholar 

  8. J. H. Brown, B. J. Pleuvry, and B. Kay. Respiratory effects of a new opiate analgesic R 39209, in the rabbit: Comparison with fentanyl. Br. J. Anaesth. 52:1101–1106 (1980).

    Google Scholar 

  9. J. D'aubioul, W. Van Gerven, A. Van de Water, R. Xhonneux, and R. S. Reneman. Cardiovascular and some respiratory effects of high doses of alfentanil in dogs. Eur. J. Pharmacol. 100:79–84 (1984).

    Google Scholar 

  10. B. Kay and D. K. Stephenson. Alfentanil (R39209): Initial experience with a new narcotic analgesic. Anaesthesia 35:1197–1201 (1980).

    Google Scholar 

  11. M. Atef, S. A. H. Youssef, M. A. Shalaby, M. G. A. El-Sayed, and W. A. Amin. Some cardiovascular and respiratory effects of alfentanil in animals. Dtsch. tierärztl. Wschr. 94:333–336 (1987).

    Google Scholar 

  12. C. Zhang, J. Y. Su, and D. Calkins. Effects of alfentanil on isolated cardiac tissues in the rabbit. Anesth. Analg. 71:268–274 (1990).

    Google Scholar 

  13. P. Veng-Pedersen and W. R. Gillespie. A system approach to pharmacodynamics. I. Theoretical framework. J. Pharm. Sci. 77:39–47 (1988).

    Google Scholar 

  14. P. Veng-Pedersen. Linear and nonlinear system approaches in pharmacokinetics: How much do they have to offer? II. The response mapping operator (RMO) approach. J. Pharmacokin. Biopharm. 16:543–571 (1988).

    Google Scholar 

  15. D. Verotta and L. B. Sheiner. Semiparametric analysis of nonsteady-state pharmacodynamic data. J. Pharmacokin. Biopharm. 19:691–712 (1991).

    Google Scholar 

  16. P. Veng-Pedersen. Reparameterization to implementing kinetic constraints in pharmacokinetics. J. Pharm. Sci. 80:978–985 (1991).

    Google Scholar 

  17. R. A. Herman and P. Veng-Pedersen. A note regarding curve fitting with a sum of exponentials. Biopharm. Drug Disp. 9:579–586 (1988).

    Google Scholar 

  18. P. Veng-Pedersen and N. B. Modi. An algorithm for constrained deconvolution based on reparameterization. J. Pharm. Sci. 81:175–180 (1991).

    Google Scholar 

  19. C. J. Hull, H. B. H. Van Beem, K. McLeod, A. Sibbald, and M. J. Watson. A pharmacodynamic model for pancuronium. Br. J. Anaesth. 50:1113–1123 (1978).

    Google Scholar 

  20. D. V. Lindley. Regression linear and the linear functional relationship. J. Roy. Stat. Soc. Suppl. 9:219–244 (1949).

    Google Scholar 

  21. P. Veng-Pedersen. Curve fitting and modelling in pharmacokinetics and some practical experiences with NONLIN and a new program FUNFIT. J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Google Scholar 

  22. P. Veng-Pedersen, J. W. Mandema, and M. Danhof. Biophase equilibration times. J. Pharm. Sci. 80:881–886 (1991).

    Google Scholar 

  23. L. B. Sheiner. Commentary to pharmacokinetic/pharmacodynamic modeling: What it is! J. Pharmacokin. Biopharm. 15:533–555 (1987).

    Google Scholar 

  24. A. Peper, C. A. Grimbergen, J. W. Kraal, and J. H. Engelbart. An approach to the modeling of the tolerance mechanism in the drug effect. I: The drug effect as a disturbance of regulations. J. Theor. Biol. 127:413–426 (1987).

    Google Scholar 

  25. A. Peper, C. A. Grimbergen, J. W. Kraal, and J. H. Engelbart. An approach to the modeling of the tolerance mechanism in the drug effect. II. On the implication of compensatory regulation. J. Theor. Biol. 132:29–41 (1988).

    Google Scholar 

  26. P. Veng-Pedersen and N. B. Modi. A system approach to pharmacodynamics. Input-effect control system analysis of central nervous effect of alfentranil. J. Pharm. Sci. 82:266–272 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, N.B., Veng-Pedersen, P. Validation of a Variable Direction Hysteresis Minimization Pharmacodynamic Approach: Cardiovascular Effects of Alfentanil. Pharm Res 11, 128–135 (1994). https://doi.org/10.1023/A:1018966232183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018966232183

Navigation