Skip to main content
Log in

Identification of an Escherichia coli Protein Impurity in Preparations of a Recombinant Pharmaceutical

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A host-cell protein impurity found in preparations of recombinant human acidic fibroblast growth factor (aFGF) was identified. Samples of aFGF examined by western blot analysis employing antiserum raised against an Escherichia coli cell lysate contained an immunoreactive protein with a molecular weight of approximately 26,000. The impurity was chromatographically isolated and the N-terminal sequence was determined. Comparing the sequence to a protein database provisionally identified the isolated impurity as the S3 ribosomal protein of E. coli. Monoclonal antibodies recognizing three separate epitopes of S3 confirmed the identity of the impurity in western blots of aFGF samples. The monoclonal antibodies were also used to estimate S3 levels in various preparations of aFGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. A. Phillips, V. Vaughn, P. L. Bloch, and F. C. Neidhardt. Gene-protein index of Escherichia coli K-12, Edition 2. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium—Cellular and Molecular Biology, American Society for Microbiology, Washington, DC, 1987, pp. 919–966.

    Google Scholar 

  2. F. M. Bogdansky. Considerations for the quality control of biotechnology products. Pharm. Technol. 11:72–74 (1987).

    Google Scholar 

  3. D. O. O'Keefe and M. L. Will. Chromatographic analysis of host-cell protein impurities in pharmaceuticals derived from recombinant DNA. In S. Ahuja (ed.), Chromatography of Pharmaceuticals, ACS Symposium Series 512, American Chemical Society, Washington, DC, 1992, pp. 121–134.

    Google Scholar 

  4. V. Anicetti. Improvement and experimental validation of protein impurity immunoassays for recombinant DNA products. In C. Horváth and J. G. Nikelly (eds.), Analytical Biotechnology: Capillary Electrophoresis and Chromatography, ACS Symposium Series 434, American Chemical Society, Washington, DC, 1990, pp. 127–140.

    Google Scholar 

  5. K. A. Thomas. Fibroblast growth factors. FASEB J. 1:434–440 (1987).

    Google Scholar 

  6. T. D. Bjornsson, M. Dryjski, J. Tluczek, R. Mennie, J. Ronan, T. N. Mellin, and K. A. Thomas. Acidic fibroblast growth factor promotes vascular repair. Proc. Natl. Acad. Sci. USA 88:8651–8655 (1991).

    Google Scholar 

  7. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 (1970).

    PubMed  Google Scholar 

  8. H. Towbin, T. Staehelin, and J. Gordon. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci USA 76:4350–4354 (1979).

    Google Scholar 

  9. R. K. Tweten and R. J. Collier. Molecular cloning and expression of gene fragments from corynebacteriophage β encoding enzymatically active peptides of diphtheria toxin. J. Bacteriol. 156:680–685 (1983).

    Google Scholar 

  10. W. J. Syu, B. Kahan, and L. Kahan. Epitope mapping of monoclonal antibodies to Escherichia coli ribosomal protein S3. J. Protein Chem. 9:159–167 (1990).

    Google Scholar 

  11. M. S. Blake, K. H. Johnston, G. J. Russell-Jones, and E. C. Gotschlich. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on western blots. Anal. Biochem. 136:175–179 (1984).

    Google Scholar 

  12. K.-J. Pluzek and J. Ramlau. Alkaline phosphatase labeled reagents. In O. J. Bjerrum and N. H. H. Heegaard (eds.), CRC Handbook of Immunoblotting of Proteins, CRC Press, Boca Raton, FL, 1988, Vol. 1, pp. 177–188.

    Google Scholar 

  13. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85 (1985).

    Google Scholar 

  14. B. R. Oakley, D. R. Kirsch, and N. R. Morris. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105:361–363 (1980).

    Google Scholar 

  15. R. L. Garnick, N. J. Solli, and P. A. Papa. The role of quality control in biotechnology: An analytical perspective. Anal. Chem. 60:2546–2557 (1988).

    Google Scholar 

  16. P. Matsudaira. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262:10035–10038 (1987).

    Google Scholar 

  17. D. Brauer and R. Röming. The primary structure of protein S3 from the small ribosomal subunit of Escherichia coli. FEBS Lett. 106:352–357 (1979).

    Google Scholar 

  18. Points to Consider in the Production and Testing of New Drugs and Biologicals Produced by Recombinant DNA Technology. Office of Biologics Research and Review, Center for Drugs and Biologics, Food and Drug Administration, 1985.

  19. R. G. Nielsen and E. C. Rickard. Applications of capillary zone electrophoresis to quality control. In C. Horváth and J. G. Nikelly (eds.), Analytical Biotechnology: Capillary Electrophoresis and Chromatography, ACS Symposium Series 434, American Chemical Society, Washington, DC, 1990, pp. 36–49.

    Google Scholar 

  20. V. Mandiyan, S. J. Tumminia, J. S. Wall, J. F. Hainfeld, and M. Boublik. Assembly of the Escherichia coli 30S ribosomal subunit reveals protein-dependent folding of the 16S rRNA domains. Proc. Natl. Acad. Sci USA 88:8174–8178 (1991).

    Google Scholar 

  21. H. F. Noller and M. Nomura. Ribosomes. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium—Cellular and Molecular Biology, American Society for Microbiology, Washington, DC, 1987, pp. 104–125.

    Google Scholar 

  22. R. C. Bruckner and M. M. Cox. The histone-like H protein of Escherichia coli is ribosomal protein S3. Nucleic Acids Res. 17:3145–3161 (1989).

    Google Scholar 

  23. R. P. Gooding and A. F. Bristow. Detection of host-derived contaminants in products of recombinant DNA technology in E. coli: A comparison of silver-staining and immunoblotting. J. Pharm. Pharmacol. 37:781–786 (1985).

    Google Scholar 

  24. H. Bremer and P. P. Dennis. Modulation of chemical composition and other parameters of the cell by growth rate. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium—Cellular and Molecular Biology, American Society for Microbiology, Washington, DC, 1987, pp. 1527–1542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Keefe, D.O., DePhillips, P. & Will, M.L. Identification of an Escherichia coli Protein Impurity in Preparations of a Recombinant Pharmaceutical. Pharm Res 10, 975–979 (1993). https://doi.org/10.1023/A:1018950319965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018950319965

Navigation