Skip to main content
Log in

Diffusion Rates and Transport Pathways of Fluorescein Isothiocyanate (FITC)-Labeled Model Compounds Through Buccal Epithelium

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize transport of FITC-labeled dextrans of different molecular weights as model compounds for peptides and proteins through buccal mucosa. The penetration of these dextrans through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The results revealed that passage of porcine buccal epithelium by hydrophilic compounds such as the FITC-dextrans is restricted to permeants with a molecular weight lower than 20 kDa. The permeabilities of buccal mucosa for the 4- and 10-kDa FITC-dextran (of the order of 10−8 cm/sec) were not significantly different from each other or from the much smaller compound FITC. The confocal images of the distribution pattern of FITC-dextrans showed that the paracellular route is the major pathway through buccal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. H. L. Lee. Enzymatic barriers to peptide and protein absorption. Crit. Rev. Ther. Drug Carrier Syst. 5:69–97 (1988).

    Google Scholar 

  2. J. C. Verhoef, H. E. Boddé, A. G. de Boer, J. A. Bouwstra, H. E. Junginger, F. W. H. M. Merkus, and D. D. Breimer. Transport of peptide and protein drugs across biological membranes. Eur. J. Drug Metab. Pharmacokinet. 15:83–93 (1990).

    Google Scholar 

  3. M. E. de Vries, H. E. Boddé, J. C. Verhoef, and H. E. Junginger. Developments in buccal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 8:271–303 (1991).

    Google Scholar 

  4. N. F. H. Ho, C. L. Barsuhn, P. S. Burton, and H. P. Merkle. Routes of delivery: Case studies, (3) Mechanistic insights to buccal delivery of proteinaceous substances. Adv. Drug Del. Rev. 8:197–235 (1992).

    Google Scholar 

  5. H. P. Merkle and G. Wolany. Buccal delivery for peptide drugs. J. Control. Rel. 21:155–164 (1992).

    Google Scholar 

  6. C. A. Squier. The permeability of oral mucosa. Crit. Rev. Oral Biol. Med. 2:13–32 (1991).

    Google Scholar 

  7. M. E. de Vries, H. E. Boddé, J. C. Verhoef, M. Ponec, W. I. H. M. Craane, and H. E. Junginger. Localization of the permeability barrier inside porcine buccal mucosa: A combined in vitro study of drug permeability, electrical resistance and tissue morphology. Int. J. Pharm. 76:25–35 (1991).

    Google Scholar 

  8. I. A. Siegel. Permeability of the oral mucosa. In J. Meyer, C. A. Squier, and S. J. Gerson (eds.), The Structure and Function of Oral Mucosa, Pergamon Press, London, 1984, pp. 95–108.

    Google Scholar 

  9. R. O. Potts and R. H. Guy. Predicting skin permeability. Pharm. Res. 9:663–669 (1992).

    Google Scholar 

  10. C. A. Lesch, C. A. Squier, A. Cruchley, D. M. Williams, and P. Speight. The permeability of human oral mucosa and skin to water. J. Dent. Res. 68:1345–1349 (1989).

    Google Scholar 

  11. P. W. Wertz and C. A. Squier. Cellular and molecular basis of barrier function in oral epithelium. Crit. Rev. Ther. Drug Carrier Syst. 8:237–269 (1991).

    Google Scholar 

  12. D. M. Shotton. Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94:175–206 (1989).

    Google Scholar 

  13. C. Cullander and R. H. Guy. Visualizing the pathways of iontophoretic current flow in real time with laser-scanning confocal microscopy and the vibrating probe electrode. In R. C. Scott, R. H. Guy, J. Hadgraft, and H. E. Boddé (eds.), Prediction of Percutaneous Penetration, Methods, Measurements, Modelling, Vol. 2, IBC Technical Services, London, 1991, pp. 229–237.

    Google Scholar 

  14. D. Harris and J. R. Robinson. Effects of inflammation on buccal permeability. Proc. Int. Symp. Control. Rel. Bioact. Mater. 17:228–229 (1990).

    Google Scholar 

  15. M. E. Dowty, K. E. Knuth, B. K. Irons, and J. R. Robinson. Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm. Res. 9:1113–1122 (1992).

    Google Scholar 

  16. E. Quadros, J. Cassidy, K. Gniecko, and S. LeRoy. Buccal and colonic absorption of CGS 16617, a novel ACE inhibitor. J. Control. Rel. 19:77–86 (1991).

    Google Scholar 

  17. S. Senel, A. J. Hoogstraate, F. Spies, H. E. Junginger, and H. E. Boddé. Enhancing effects of bile salts on buccal penetration of fluorescent markers: Kinetic and histological studies. Pharm. Weekblad Sci. Ed. F36 Suppl. F:54 (1992).

    Google Scholar 

  18. S.-Y. Chen and C. A. Squier. The ultrastructure of the oral epithelium. In J. Meyer, C. A. Squier, and S. J. Gerson (eds.), The Structure and Function of Oral Mucosa, Pergamon Press, London, 1984, pp. 7–30.

    Google Scholar 

  19. N. Uchida, Y. Maitani, Y. Machida, M. Nakagaki, and T. Nagai. Influence of bile salts on the permeability of insulin through the nasal mucosa of rabbits in comparison with dextran derivatives. Int. J. Pharm. 74:95–103 (1991).

    Google Scholar 

  20. T. Ohtani, M. Murakami, A. Yamamoto, K. Takada, and S. Muranishi. Effect of absorption enhancers on pulmonary absorption to fluorescein isothiocyanate dextrans with various molecular weights. Int. J. Pharm. 77:141–150 (1991).

    Google Scholar 

  21. J. B. M. M. van Bree, A. G. de Boer, M. Danhof, L. A. Ginsel, and D. D. Breimer. Characterization of an “in vitro” blood brain barrier (BBB): Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247:1233–1239 (1988).

    Google Scholar 

  22. C. A. Squier and C. A. Lesch. Penetration pathways of different compounds through epidermis and oral epithelium. J. Oral Pathol. 17:512–516 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogstraate, A.J., Cullander, C., Nagelkerke, J.F. et al. Diffusion Rates and Transport Pathways of Fluorescein Isothiocyanate (FITC)-Labeled Model Compounds Through Buccal Epithelium. Pharm Res 11, 83–89 (1994). https://doi.org/10.1023/A:1018949828548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018949828548

Navigation