Skip to main content
Log in

Acid-Catalyzed Peptide Bond Hydrolysis of Recombinant Human Interleukin 11

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Recombinant human interleukin 11 (rhIL-11) is a multispectrum cytokine that plays an important role in megakaryocytopoiesis and platelet production. Probing rhIL-11 chemical reactivity in aqueous solution is an important initial step in developing a dosage form for rhIL-11 clinical trials. This report documents rhIL-11 degradation kinetics at 50°C in solutions adjusted to pH 3.0 to 9.5. Stressed samples were analyzed by reverse-phase HPLC and degradation product peaks were isolated for structural characterization. The results show maximal stability in the region pH 6.5 to 7.0. Degradation product identification shows that the major reaction pathway in acidic solution involves peptide cleavage at aspartate133–proline134. In alkaline solution, protein disappearance proceeds via nonspecific loss to container surfaces. Degradation products at alkaline pH have not been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. C. Clark and R. Kamen. The human hematopoietic colony-stimulating factors. Science 236:1229–1236 (1987).

    Google Scholar 

  2. Y.-C. Yang and T. Yin. Interleukin-11 and its receptor. Biofactors 4:15–21 (1992).

    Google Scholar 

  3. S. R. Paul, F. Bennet, J. A. Calvetti, K. Kelleher, C. R. Wood, R. M. O'Hara, A. C. Leary, B. Sibley, S. C. Clark, D. A. Williams, and Y.-C. Yang. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoeitic and hematopoietic cytokine. Proc. Natl. Acad. Sci. USA 87:7512–7516 (1990).

    Google Scholar 

  4. M. Musashi, Y.-C. Chang, S. R. Paul, S. C. Clark, T. Sudo, and M. Ogawa. Proc. Natl. Acad. Sci. USA 88:765–769 (1991).

    Google Scholar 

  5. M. Teramura, S. Kobayashi, S. Hoshino, K. Oshimi, and H. Mizoguchi. Interleukin 11 enhances human megakaryocytopoiesis in vitro. Blood 79:327–331 (1992).

    Google Scholar 

  6. S. Goldman, T. Neben, J. Lobelenz, K. McCarthy, J. B. Stoudemire, and R. G. Schaub. Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases in periperal platelet number in normal and splenectomized mice. J. Cell. Biochem. 16C:74–80 (1992).

    Google Scholar 

  7. A. Bree, F. Schlerman, G. Timonoy, K. McCarthy, and J. Stoudemire. Pharmacokinetics and thrombopoietic effects of recombinant human interleukin-11 in nonhuman primates and rodents. Blood 78:132a (1991).

    Google Scholar 

  8. R. C. Wood, S. R. Paul, S. Goldman, M. Muench, R. Palmer, G. Pedneault, G. E. Morris, A. Bree, L. Hayes, J. Hoysradt, R. Schaub, M. A. S. Moore, and S. C. Clark. IL-11 expression in donor bone marrow cells improves hematological reconstitution in lethally irradiated recipient mice. J. Cell. Biochem. 16C:93–97 (1992).

    Google Scholar 

  9. J. Geigert. Overview of the stability and handling of recombinant protein drugs. J. Parent. Sci. Technol. 43:220–224 (1989).

    Google Scholar 

  10. M. J. Pikal, K. M. Dellerman, M. L. Roy, and R. M. Riggin. The effects of formulations variables on the stability of freezedried human growth hormone. Pharm. Res. 8:427–436 (1991).

    Google Scholar 

  11. W. Jiskoot, E. C. Beuvery, A. A. M. de Koning, J. N. Herron, and D. J. A. Crommelin. Analytical approaches to the study of monoclonal antibody stability. Pharm. Res. 7:1234–1241 (1990).

    Google Scholar 

  12. G. C. Visor, V. M. Knepp, K. P. Tsai, M. D. Miller, J. Duffey, T. Calderwood, D. Lokensgard, J. Killian, T. Malefyt, L. Gu, and I. Massey. Development and characterization of a lyophilized dosage form of IL-1β. Lymph. Res. 9:425–434 (1990).

    Google Scholar 

  13. P. Labrude and C. Vigneron. Stability and functional properties of haemoglobin freeze-dried in the presence of four protective substances after prolonged storage: Dose-effect relationships. J. Pharm. Pharacol. 35:23–27 (1982).

    Google Scholar 

  14. J. Geigert, B. M. Panshcar, S. Fong, H. N. Huston, D. E. Wong, D. Y. Wong, C. Tanford and M. Pemberton. The long-term stability of recombinant (serine-17) human interferon-β. J. Inter. Res. 8:539–547 (1988).

    Google Scholar 

  15. J. Geigert, B. M. Panschar, C. Taforo, J. Paola, S. Fong, H. N. Huston, D. E. Wong, and D. Y. Wong. Parameters for the evaluation of long-term stability of tumour necrosis factor preparations. Dev. Biol. Stand. 69:129–138 (1988).

    Google Scholar 

  16. E. Watson and W. C. Kenney. High-performance size-exclusion chromatography of recombinant derived proteins and aggregated species. J. Chromatogr. 436:289–298 (1988).

    Google Scholar 

  17. K. C. Lee, Y. J. Lee, H. M. Song, S. J. Chung, and P. P. DeLuca. Degradation of synthetic salmon calcitonin in aqueous solution. Pharm. Res. 9:1521–1523 (1992).

    Google Scholar 

  18. D. J. Kroon, A. Baldwin-Ferro, and P. Lalan. Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm. Res. 9:1386–1393 (1992).

    Google Scholar 

  19. J. Brange, L. Langkjaer, S. Havelund, and A. Volund. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm. Res. 9:715–726 (1992).

    Google Scholar 

  20. J. Brange, S. Havelund, and P. Hougaard. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm. Res. 9:727–734 (1992).

    Google Scholar 

  21. B. M. Eckhardt, J. Q. Oeswein, and T. A. Bewley. Effect of freezing on aggregation of human growth hormone. Pharm. Res. 8:1360–1364 (1991).

    Google Scholar 

  22. S. Shire. pH dependent polymerization of a human leukocyte interferon produced by recombinant deoxyribonucleic acid technology. Biochemistry 22:2664–2671 (1983).

    Google Scholar 

  23. J. A. Schrier, R. A. Kenley, R. Williams, R. J. Corcoran, Y. Kim, R. P. Northey, D. D'Augusta, and M. Huberty. Degradation pathways for recombinant human macrophage colony-stimulating factor in aqueous solution. Pharm. Res. 10:933–944 (1993).

    Google Scholar 

  24. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–917 (1989).

    Google Scholar 

  25. V. V. Mozhaev, I. V. Berezin, and K. Martinek. Structurestability relationship in proteins. CRC Crit. Rev. Biochem. 23:235–282 (1988).

    Google Scholar 

  26. J. Q. Oeswein and S. J. Shire. Physical biochemistry of protein drugs. In V. H. L. Lee (ed.), Peptide and Protein Drug Delivery, Marcel Dekker, New York, 1991, pp. 167–202.

    Google Scholar 

  27. M. Landon. Cleavage at aspartyl-proline bonds. Methods Enzymol. 47:145–57 (1977).

    Google Scholar 

  28. D. Piszkiewicz, M. Landon, and E. L. Smith. Anomolous cleavage of aspartyl-proline peptide bonds during amino acid sequence determination. Biochem. Biophys. Res. Comm. 40:1173–1178 (1970).

    Google Scholar 

  29. A. S. Ingliss. Cleavage at aspartic acid. Methods Enzymol. 91:324–332 (1983).

    Google Scholar 

  30. K. Patel and R. T. Borchardt. Chemical pathways of peptide degradation. II. Pharm. Res. 7:703–711 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenley, R.A., Warne, N.W. Acid-Catalyzed Peptide Bond Hydrolysis of Recombinant Human Interleukin 11. Pharm Res 11, 72–76 (1994). https://doi.org/10.1023/A:1018945727640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018945727640

Navigation