Skip to main content
Log in

Comparative Pharmacokinetic and Pharmacodynamic Analysis of Phthaloyl Glycine Derivatives with Potential Antiepileptic Activity

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Glycine, in addition to GABA, is one of the most important neurotransmitter amino acids. The described structure pharmacokinetic pharmacodynamic relationships (SPPR) study explored the possibility of utilizing phthaloyl derivatives of glycine as new antiepileptics. This was carried out by investigating the pharmacokinetics and pharmacodynamics (anticonvulsant activity and neurotoxicity) of the following four phthalimide derivatives: phthaloyl glycine, phthaloyl glycinamide, N,N-diethyl phthaloyl glycinamide and N,N-diisopropyl phthaloyl glycinamide. Phthaloyl glycine did not demonstrate anticonvulsant activity, possibly because of its poor pharmacokinetics, high clearance, low volume of distribution and short half life. The three glycinamide derivatives showed anticonvulsant activity and had better pharmacokinetic profiles, longer half life and mean residence time, than phthaloyl glycine. Phthaloyl glycinamide was more potent than one of the major antiepileptic agents— valproic acid and showed a better margin between activity and neurotoxicity. The four investigated phthaloyl glycine derivatives did not operate as chemical drug delivery systems (CDDS) of glycine, but acted rather as drugs on their own. Phthaloyl glycine was excreted unchanged in the urine while the urinary metabolites of the glycinamide derivatives were phthaloyl glycine and phthaloyl glycinamide. In this analogous series of phthalimide derivatives, minor chemical changes affected dramatically the compounds’ pharmacokinetics. The current study demonstrates the benefit of the SPPR approach in developing and selecting a potent antiepileptic compound in intact animals based not only on its intrinsic pharmacodynamic activity, but also on its better pharmacokinetic profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. E. Dreifuss. New anticonvulsant drugs in “Epilepsy, Progress in Treatment,” M. Dam, S. I. Johannessen, B, Nilsson and M. Sillapaa (eds), Wiley & Sons, NY, 1987, pp. 247–256.

    Google Scholar 

  2. E. Roberts, T. N. Chase, D. B. Tower (eds.): “GABA in Nervous System Function,” Raven Press, NY (1976).

    Google Scholar 

  3. P. L. Morselli and R. Palminteri: Progabide. In. R. H. Levy, F. E. Dreifuss, R. H. Mattson, B. S. Meldrum and J. K. Penry (eds.). Antiepileptic Drugs, 3rd ed., Raven Press, New York, 1989, pp 887–905.

    Google Scholar 

  4. M. Bialer. Comparative pharmacokinetics of the newer antiepileptic drugs. Clin. Pharmacokinet. 24, 441–452 (1993).

    MATH  Google Scholar 

  5. S. M. Grant and R. C. Heel. Vigabatrin—a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in epilepsy and disorders of motor control. Drugs. 41, 889–926 (1991).

    Google Scholar 

  6. D. Chadwick (ed). New Trends in Epilepsy Management: The Role of Gabapentin. Royal Society of Medicine Services Ltd., London, 1993.

    Google Scholar 

  7. J. Roba, R. Cavalier, A. Cordi, H. Gorissen, M. Herin, P. Janssens de Varebeke, C. Onkelinx, M. Remacle and W. van Dorsser. Milacemide in “New Anticonvulsant Drugs,” B. S. Meldrum and R. J. Porter (eds.), John Libby, London 1986, pp. 179–190.

    Google Scholar 

  8. J. Liu, N. Seiler, C. Marescaux, A. Depaulis and M. Vergns. Potentiation of γ-vinyl GABA (vigabatrin) effects by glycine. Eur. J. Pharmacol. 182, 109–115 (1990).

    Google Scholar 

  9. E. Toth and A. Lajtha. Glycine potentiates the action of some anticonvulsant drugs in some seizure models. Neurochem. Res. 8, 1711–1718 (1984).

    Google Scholar 

  10. J. D. Wood, P. Krogsgaard-Larsen and A. Schousboe. Amplification by glycine of the effect of the GABA transport inhibitor THPO on synaptosomal GABA level. Neurochem. Res. 13, 917–921 (1988).

    Google Scholar 

  11. N. Seiler and S. Sarhan. Synergistic anticonvulsant effects of a GABA agonist and glycine. Gen. Pharmacol. 15, 367–369 (1984).

    Google Scholar 

  12. P. Krogsgaard-Larsen, H. Hieds, E. Falach, F. S. Jorgensen and L. Neilsen. Recent advances in GABA agonists, antagonists and uptake inhibitors: Structure-activity relationships and therapeutic potential. Advanc. Drug Res. 17, 382–456 (1988).

    Google Scholar 

  13. E. Pop, M. E. Brewster and N. Bodor. Improved central nervous system delivery and activity of antiepileptic drugs. Drug Future 16, 221–248 (1991).

    Google Scholar 

  14. N. Bodor and M. E. Brewster. Problems of delivery of drugs to the brain. Pharmacol. Ther. 19, 337–386 (1993).

    Google Scholar 

  15. M. A. Rogawski and R. J. Porter. Antiepileptic Drugs: Pharmacological mechanism and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol. Rev. 42, 223–286 (1990).

    Google Scholar 

  16. K. Nakagawa and R. I. Huxtable. The anticonvulsive action of two liphophilic taltrimide derivatives. Neurochem. Int. 7, 819–824 (1985).

    Google Scholar 

  17. D. Wiechert. The effects of succinyl-GABA derivatives on experimental seizures. In Epilepsy: A Clinical and Experimental Research. Mongr. Neural. Sci. Krager, Basel Vo,. 5, 1980, pp 160–162.

    Google Scholar 

  18. S. Bhowmick, M. Pal and S. P. Pal. Synthesis and anticonvulsant activity of N-phthaloyl GABA—a new GABA derivative. Ind. J. Exp. Biol. 27, 805–808 (1989).

    Google Scholar 

  19. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd edn., Marcel Dekker, New York, 1982.

    Google Scholar 

  20. K. Yamaoka. Methods for Pharmacokinetic Analysis for Personal Computers, edn 2, Nanko-D Ltd., Tokyo, 1986, p. 145.

    Google Scholar 

  21. R. J. Porter, J. J. Ceregino, G. D. Gladding, B. J. Hessie, H. J. Kupferberg, B. Scoville and B. G. White. Antiepileptic drug development program. Cliv. Clin. Q., 51, 293–305 (1984).

    Google Scholar 

  22. I. O. Edafiogho, K. R. Scott, J. A. Moore, V. A. Farrar and J. M. Nicholson. Synthesis and anticonvulsant activity of imidoxy derivatives. J. Med. Chem. 34, 387–392 (1991).

    Google Scholar 

  23. J. M. Chapman Jr., G. H. Cocolas and I. H. Hall. Hypolipidemic activity of phthalimide derivatives 1. N-substituted phthalimide derivatives. J. Med. Chem., 22, 1399–1408 (1979).

    Google Scholar 

  24. S. Banerji, S. Bhowmick, M. Bera, M. Pal and S. P. Pal. Antinociceptive action of GABA-mimetic agent-N-phthaloyl GABA. Ind. J. Exp. Biol. 29, 538–542 (1991).

    Google Scholar 

  25. S. Banerji, M. Habibuddin and S. P. Pal. Antiulcer and gastric secretory activity of N-phthaloyl-aminobutyric acid. Eur. J. Pharmacol. 219, 211–215 (1992).

    Google Scholar 

  26. M. Habibuddin, M. Pal and S. P. Pal. Neuropharmacology of amide derivatives of P-GABA. Ind. J. Exp. Biol. 30, 578–582 (1992).

    Google Scholar 

  27. Y. S. Andreichikov, V. V. Zalesov and N. A. Podushkina. Synthesis and biological activity of γ—(phthalimido) alkylcarbocylic acid amides. Khim. Farm. Zh. 14, 25–30 (1980).

    Google Scholar 

  28. G. Osuide, G. D. Lahan, J. A. Owoyale and I. O. Edafiogho. Preliminary studies on the anticonvulsant effects of methyl N-phthalimidoxy acetate (NMPA) in young chicks. Niger. J. Pharm. 12, 386–389 (1981).

    Google Scholar 

  29. Analgesic N-phthaloyl-amino acid amides. US 3,452, 141 (1969) Chem. Abst. 80982 u (1969).

  30. M. Bianchi and F. Barzaghi. Compounds related structurally to-phthalimidoglutarimide (Thalidomide) I. Amides to aliphatic-phthalimido-acids. Frmaco. Ed. Sci. 20, 611–628 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salach, O.A., Hadad, S., Haj-Yehia, A. et al. Comparative Pharmacokinetic and Pharmacodynamic Analysis of Phthaloyl Glycine Derivatives with Potential Antiepileptic Activity. Pharm Res 11, 1429–1434 (1994). https://doi.org/10.1023/A:1018943906510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018943906510

Navigation