Skip to main content
Log in

Multivariate interpolating (m, l, s)-splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The multivariate interpolating (m, l, s)-splines are a natural generalization of Duchon's thin plate splines (TPS). More precisely, we consider the problem of interpolation with respect to some finite number of linear continuous functionals defined on a semi-Hilbert space and minimizing its semi-norm. The (m, l, s)-splines are explicitly given as a linear combination of translates of radial basis functions. We prove the existence and uniqueness of the interpolating (m, l, s)-splines and investigate some of their properties. Finally, we present some practical examples of (m, l, s)-splines for Lagrange and Hermite interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337–404.

    Google Scholar 

  2. M. Attéia, Hilbertian Kernels and Spline Functions, Studies in Computational Mathematics, Vol. 4 (North-Holland, Amsterdam, 1992).

    Google Scholar 

  3. A. Bouhamidi, Interpolation et approximation par des fonctions splines radiales à plusieurs variables, Ph.D. thesis, Université de Nantes (1992).

  4. A. Bouhamidi and A. Le Méhauté, Spline curves and surfaces with tension, in: Wavelets, Images and Surfaces Fitting (A.K. Peters, Wellesley, MA, 1994) pp. 51–58.

    Google Scholar 

  5. J. Duchon, Fonctions-spline à énergie invariante par rotation, Rapport de Recherche No. 27, Grenoble (1976).

  6. J. Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, RAIRO Anal. Numér. 10(12) (1976) 5–12.

    Google Scholar 

  7. R. Franke, Thin plate splines with tension, Comput. Aided Geom. Design 2 (1985) 87–95.

    Google Scholar 

  8. H.G. Garnir, Sur les distributions résolvantes des opérateurs de la physique mathématique, Bull. Soc. Roy. Sci. Liège (1951) 174–195; 271–296.

  9. R.L. Harder and R.N. Desmarais, Interpolation using surface splines, J. Aircraft 9 (1972) 189–191.

    Google Scholar 

  10. R.L. Hardy, Multiquadric equations of topography and irregular surfaces, J. Geophys. Res. 76 (1971) 1905–1915.

    Google Scholar 

  11. R.L. Hardy, Theory and application of the multiquadric-biharmonic method, Comput. Math. Appl. 19(8/9) (1990) 163–208.

    Google Scholar 

  12. P.J. Laurent, Approximation et Optimisation (Hermann, Paris, 1972).

    Google Scholar 

  13. A. Le Méhauté, Interpolation et approximation par des fonctions polynomiales par morceaux dans ℝn, Thèse d'Etat, Rennes (1984).

  14. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988) 77–89.

    Google Scholar 

  15. W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comp. 54 (1990) 211–230.

    Google Scholar 

  16. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11–22.

    Google Scholar 

  17. J. Peetre, Espaces d'interpolation et théorème de Sobolev, Ann. Inst. Fourier, Grenoble 16 (1966) 279–317.

    Google Scholar 

  18. L. Schwartz, Théorie des Distributions (Hermann, Paris, 1966).

    Google Scholar 

  19. L. Schwartz, Sous-espaces Hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Anal. Math. (1964).

  20. F. Trèves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhamidi, A., Le Méhauté, A. Multivariate interpolating (m, l, s)-splines. Advances in Computational Mathematics 11, 287–314 (1999). https://doi.org/10.1023/A:1018940429434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018940429434

Navigation