Skip to main content
Log in

Evaluation of Retinoids as Therapeutic Agents in Dermatology

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Evaluation of 13-cis-12-substituted analogues of retinoic acid in a series of dermatologic screens has revealed that structural modifications can lead to selectivity and specificity. An analogue, 11-cis,13-cis-12-hydroxymethylretinoic acid, δ-lactone, has been found to have good activity and to be devoid of topical and systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Packer (ed.). Methods in Enzymology, Academic Press, San Diego, CA, 1990, Vol. 190.

    Google Scholar 

  2. A. H. Lewin, F. I. Carroll, and C. G. Moreland. 12-s-cis-a novel conformation of retinoids. J. Am. Chem. Soc. 103:6527–6529 (1981).

    CAS  PubMed  Google Scholar 

  3. A. H. Lewin, M. G. Whaley, S. R Parker, F. I. Carroll, and G. C. Moreland. 12-Carboxyretinoic acids. Synthesis and structure. J. Org. Chem. 47:1799–1807 (1982).

    Google Scholar 

  4. A. H. Lewin, D. H. Rector, S. R. Parker, M. C. Wani, and F. I. Carroll. Configurationally locked retinoids. 13-cis-δ-lactones of 12-carboxyretinol and 12-(hydroxymethyl)retinoic acid. J. Org. Chem. 48:222–227 (1983).

    Google Scholar 

  5. A. H. Lewin, D. R. Rector, S. R. Parker, M. C. Wani, and F. I. Carroll. Synthesis and characterization of trans, 13-cis-, and 11-cis, 13-cis-12-(hydroxymethyl)retinols. J. Org. Chem. 49:649–652 (1984).

    Google Scholar 

  6. R. H. Wiley and C. L. De Silva. 2-Pyrones. XXII. β-Methyl-glutaconic acid, β-methylglutaconanilic acids and related dianilides, pyridones and pyridazones. J. Am. Chem. Soc. 78:4683–4689 (1956).

    Google Scholar 

  7. J. A. Mezick, M. C. Bhatia, L. M. Shea, E. G. Thorne, and R. J. Capetola. Antiacne activity of retinoids in the rhino mouse. In H. I. Maibach and N. J. Lowe (eds.), Models in Dermatology, Basel, Switzerland, Karger, 1985, Vol. 2, pp. 59–63.

    Google Scholar 

  8. E. C. Gomez and P. Frost. Hamster flank organ: Relevance of studies with topically applied anti-androgens. In H. I. Maibach (ed.), Animal Models in Dermatology. Relevance to Human Dermatopharmacology and Dermatotoxicology, a symposium held at University of California Medical School in San Francisco, Churchill Livingstone, New York, 1975, pp. 190–202.

    Google Scholar 

  9. E. G. Astrup and J. E. Paulsen. Effect of retinoid acid pretreatment of 12-O-tetradecanoylphorbol-13-acetate-induced cell population kinetics and polyamine biosynthesis in hairless mouse epidermis. Carcinogenesis 3:313–320 (1982).

    Google Scholar 

  10. W. Bollag. Therapeutic effects of an aromatic retinoic acid analog on chemically induced skin papillomas and carcinomas of mice. Eur. J. Cancer 10:731–737 (1974).

    Google Scholar 

  11. J. H. Draize, G. Woodard, and H. O. Calver. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. 82:377–390 (1944).

    Google Scholar 

  12. M. R. Stoline. Status of multiple comparisons: Simultaneous estimation of all pairwise comparison in one-way ANOVA designs. Am. Stat. 35:134–141 (1981).

    Google Scholar 

  13. E. J. Van Scott. Experimental animal integumental models for screening potential dermatologic drugs. In W. Montagna, E. J. Van Scott, and R. Stoughton (eds.), Pharmacology of the Skin, Appleton—Century—Crofts, New York, 1972, pp. 523–533.

    Google Scholar 

  14. L. H. Kligman and A. M. Kligman. The effect on rhino mouse skin of agents which influence keratinization and exfoliation. J. Invest. Dermatol. 73:354–358 (1979).

    Google Scholar 

  15. R. E. Ashton, M. J. Connor, and N. J. Lowe. Histologic changes in the skin of the rhino mouse (hrrhhrrh) induced by retinoids. J. Invest. Dermatol. 82:632–635 (1984).

    Google Scholar 

  16. U. Lichti, E. Patterson, H. Hennings, and S. H. Yuspa. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate induced ornithine decarboxylase in proliferating basal cells but not in differentiating cells from mouse epidermis. J. Cell. Physiol. 107:261–270 (1981).

    Google Scholar 

  17. A. K. Verma and R. K. Boutwell. Vitamin A acid (retinoic acid), a potent inhibitor of 12-O-tetradecanoyl-phorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis. Cancer Res. 37:2196–2201 (1977).

    Google Scholar 

  18. J. Janne, H. Poso, and A. Raina. Polyamines in rapid growth and cancer. Biochim. Biophys. Acta 473:241–293 (1978).

    Google Scholar 

  19. J. Breeding, M. Sakamoto, N. Lowe, and M. Phuvel. Epidermal ornithine decarboxylase and DNA synthesis activity following different stimuli in the hairless mouse. Clin. Res. 30:156A (1982).

    Google Scholar 

  20. N. J. Lowe, M. J. Connor, R. Ashton, and M. Wortzman. Animal assays for anti-psoriatic, retinoid and sun protective agents. Br. J. Dermatol. 111 (Suppl. 27):98–108 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, A.H., Bos, M.E., Zusi, F.C. et al. Evaluation of Retinoids as Therapeutic Agents in Dermatology. Pharm Res 11, 192–200 (1994). https://doi.org/10.1023/A:1018938920796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018938920796

Navigation