K. Burrage and P. M. Moss, Simplifying assumptions for the order of partitioned multivalue methods, BIT 20 (1980) 452–465.
Google Scholar
K. Burrage, Order and stability of explicit multivalue methods, Appl. Numer. Math. 1 (1985) 363–379.
Google Scholar
K. Burrage, Order properties of multivalue methods, IMA J. Numer. Anal. 8 (1988) 43–69.
Google Scholar
K. Burrage, The search for the holy grail, or: predictor-corrector methods for solving ODEIVPs, Appl. Numer. Math. 11 (1993) 125–141.
Google Scholar
K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations (Oxford University Press, New York, 1995).
Google Scholar
J. C. Butcher, On the convergence of numerical solutions to ordinary differential equations, Math. Comp. 20 (1966) 1–10.
Google Scholar
J. C. Butcher, The order of numerical methods for ordinary differential equations, Math. Comp. 27 (1973) 793–806.
Google Scholar
Nguyen huu Cong and T. Mitsui, A class of explicit parallel two-step Runge-Kutta methods, in preparation.
Nguyen huu Cong, Parallel iteration of symmetric Runge-Kutta methods for non stiff initial value problems, J. Comput. Appl. Math. 51 (1994) 117–125.
Google Scholar
Nguyen huu Cong, Explicit parallel two-step Runge-Kutta-Nyström methods, Comput. Math. Appl., to appear.
G. J. Cooper, The order of convergence of general linear methods for ordinary differential equations, SIAM J. Numer. Anal. 15 (1978) 643–661.
Google Scholar
W. H. Enright and J. D. Pryce, Two Fortran packages for assessing initial value methods, ACM Trans. Math. Software 13 (1987) 1–27.
Google Scholar
A. Guillou and J. L. Soulé, La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation, R.I.R.O. R-3 (1969) 17–44.
Google Scholar
E. Hairer and G. Wanner, On the Butcher group and general multivalue methods, Computing 13 (1974) 1–15.
Google Scholar
E. Hairer and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics (Springer, Berlin, 1987).
Google Scholar
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics (Springer, Berlin, 1991).
Google Scholar
P. J. van der Houwen and B. P. Sommeijer, Variable step integration of high order Runge-Kutta methods on parallel computers, Report NM-R8817, CWI, Amsterdam, The Netherlands (1988).
Google Scholar
P. J. van der Houwen and B. P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize control, J. Comput. Appl. Math. 29 (1990) 111–127.
Google Scholar
P. J. van der Houwen and Nguyen huu Cong, Parallel block predictor-corrector methods of Runge-Kutta type, Appl. Numer. Math. 13 (1993) 109–123.
Google Scholar
T. E. Hull, W. E. Enright, B. M. Fellen and A. E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972) 603–637.
Google Scholar
A. Iserles and S. P. Nørsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10 (1990) 463–488.
Google Scholar
Z. Jackiewicz and S. Tracogna, A general class of two-step Runge-Kutta methods for ordinary differential equations, SIAM J. Numer. Anal. 1 (1988) 1–38.
Google Scholar
K. R. Jackson and S. P. Nørsett, The potential for parallelism in Runge-Kutta methods. Part I: RK formula in standard forms, SIAM J. Numer. Anal. 32 (1995) 49–82.
Google Scholar
V. I. Krylov, Priblizhennoe Vyschisslenie Integralov (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959). English translation: Approximate Calculation of Integrals (Macmillan, New York, 1962).
Google Scholar
I. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3/87, University of Trondheim, Division Numerical Mathematics, Norway (1987).
Google Scholar
I. Lie and S. P. Nørsett, Superconvergence for multistep collocation, Math. Comp. 52 (1989) 65–79.
Google Scholar
S. P. Nørsett and H. H. Simonsen, Aspects of parallel Runge-Kutta methods, in: Workshop on Numerical Methods for Ordinary Differential Equations, L'Aquila, ed. A. Bellen, Lecture Notes in Mathematics 1386 (Springer, Berlin, 1989) 103–117.
Google Scholar
S. Schneider, Numerical experiments with a multistep Radau method, BIT 33 (1993) 332–350.
Google Scholar