Skip to main content
Log in

Representing and reasoning about concurrent actions with abductive logic programs

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

In this paper we extend Gelfond and Lifschitz' action description language A with concurrent actions and observation propositions to describe the predicted behaviour of domains of (concurrent) actions and actually observed behaviour, respectively, without requiring that the actually observed behaviour of a domain of actions be consistent with its predicted behaviour. We present a translation from domain descriptions and observations in the new action language to abductive normal logic programs. The translation is shown to be both sound and complete. From the standpoint of model-based diagnosis, in particular, we discuss the temporal explanation of inferring actions from fluent changes at two different levels, namely, at the domain description level and at the abductive logic programming level. The method is applicable to the temporal projection problem with incomplete information, as well as to the temporal explanation of inferring actions from fluent changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Alferes, C.V. Damásio and L.M. Pereira, SLX — A top-down derivation procedure for programs with explicit negation, in: International Logic Programming Symposium, ed. M. Bruynooghe (MIT Press, 1994).

  2. J.J. Alferes and L.M. Pereira, Reasoning with Logic Programming, LNAI 1111 (Springer, 1996).

    Google Scholar 

  3. J.J. Alferes, L.M. Pereira and T.C. Przymusinski, “Classical” negation in non-monotonic reasoning and logic programming, in: Artificial Intelligence and Mathematics Workshop, eds. H. Kautz and B. Selman (Fort Lauderdale, 1996).

  4. K.R. Apt and M. Bezem, Acyclic programs, in: Proc. of ICLP 90 (MIT Press, 1990) pp. 579–597

  5. A.B. Baker, Nonmonotonic reasoning in the framework of situation calculus, Artificial Intelligence 49 (1991) 5–23.

    Article  MATH  MathSciNet  Google Scholar 

  6. A.B. Baker and M.L. Ginsberg, Temporal projection and explanation, in: Proc. of the IJCAI 89 (Morgan Kaufmann, 1989) pp. 906–911.

  7. C. Baral and M. Gelfond, Representing concurrent actions in extended logic programming, in: IJCAI (Morgan Kaufmann, 1993) pp. 866–871.

  8. C. Baral and M. Gelfond, Reasoning about effects of concurrent actions, Manuscript, University of Texas at El Paso (1994).

    Google Scholar 

  9. K. van Belleghem, M. Denecker and D. de Schreye, Combining situation calculus and event calculus, in: Proc. of ICLP 95 (MIT Press, 1995).

  10. K. Clark, Negation as failure, in: Logic and Databases, eds. H. Gallaire and J. Minker (Plenum Press, 1978) pp. 293–322.

  11. L. Console, D.T. Dupre and P. Torasso, On the relationship between abduction and deduction, J. of Logic and Computation 1(5) (1991) 661–690.

    MATH  Google Scholar 

  12. J. Crawford and D.W. Etherington, Formalizing reasoning about change: a qualitative reasoning approach, in: Proc. of AAAI 92 (1992) pp. 577–583.

  13. C.V. Damásio, L.M. Pereira and N. Wolfgang, REVISE: An extended logic programming system for revising knowledge bases, in: Proc. of KR 94 (1994).

  14. J. de Kleer, A.K. Mackworth and R. Reiter, Characterizing diagnoses and systems, Artificial Intelligence 56 (1992) 197–222.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Denecker and D. de Schreye, SLDNFA: an abductive procedure for normal abductive programs, in: Logic Programming: Proc. of 1992 Int. Joint Conference and Symposium, ed. Apt (MIT Press, 1992) pp. 686–700.

  16. M. Denecker, Knowledge representation and reasoning in incomplete logic programming, Ph.D. thesis, Department of Computer Science, K.U. Leuven (1993).

    Google Scholar 

  17. M. Denecker and D. de Schreye, Representing incomplete knowledge in abductive logic programming, in: Logic Programming: Proc. of the 1993 Int. Symposium (MIT Press, 1993) pp. 147–163.

  18. P.M. Dung, Representing actions in logic programming and its application in database updates, in: Proc. of ICLP 93 (MIT Press, 1993) pp. 222–238.

  19. E. Eshghi and R. Kowalski, Abduction compared with negation as failure, in: Proc. of the 6th Int. Conf. on Logic Programming, eds. G. Levi and M. Martelli (MIT Press, 1989) pp. 234–254.

  20. C. Evans, Negation-as-failure as an approach to the Hanks and McDermott problem, in: Proc. of the 2nd Int. Symp. on Artificial Intelligence (1989).

  21. M. Gelfond, Autoepistemic logic and formalization of commonsense reasoning, in: Non-Monotonic Reasoning: Second International Workshop, Lecture Notes in Artificial Intelligence 346 (Springer, 1989) pp. 176–186.

  22. M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: Proc. of 5th Logic Programming Symposium, eds. R. Kowalski and K. Bowen (MIT Press, 1988) pp. 1070–1080.

  23. M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: Logic Programming: Proc. of the 7th Int. Conf., eds. D. Warren and P. Szeredi (MIT Press, 1990) pp. 579–597.

  24. M. Gelfond and V. Lifschitz, Representing action and change by logic programs, Journal of Logic Programming 17 (1993) 301–322.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Gelfond, V. Lifschitz and A. Rabinov, What are the limitations of the situation calculus?, in: Automated Reasoning: Essays in Honor of Woody Bledsoe, ed. R. Moore (1991) pp. 167–179.

  26. R. Greiner, B. Smith and R. Wilkerson, A correction to the algorithm in Reiter's theory of diagnosis, Artificial Intelligence 41(1) (1989) 79–88.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Hamscher, L. Console and J. de Kleer, eds., Readings in Model-Based Diagnosis (Morgan Kaufmann, 1992).

  28. S. Hanks and D. McDermott, Nonmonotonic logics and temporal projection, Artificial Intelligence 35 (1988) 165–195.

    Article  MathSciNet  Google Scholar 

  29. B.A. Haugh, Simple causal minimizations for temporal persistence and projection, in: Proc. of the AAAI 87 (1987) pp. 218–223.

  30. A.C. Kakas, R.A. Kowalski and F. Toni, Abductive logic programming, J. of Logic and Computation 2(6) (1993) 719–770.

    MathSciNet  Google Scholar 

  31. G.N. Kartha, Two counterexamples related to Baker's approach to the frame problem, Artificial Intelligence 69 (1994) 379–391.

    Article  MATH  MathSciNet  Google Scholar 

  32. G.N. Kartha, Soundness and completeness theorems for three formalizations of action, in: Proc. IJCAI 93 (MIT Press, 1993) pp. 712–718.

  33. G.N. Kartha and V. Lifschitz, Actions with indirect effects: preliminary report, in: Proc. of KR 94 (Morgan Kaufmann, 1994) pp. 341–350.

  34. H.A. Kautz, The logic of persistence, in: Proc. of the AAAI 86 (1986) pp. 401–405.

  35. R.A. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986) 67–75.

    Article  Google Scholar 

  36. R.A. Kowalski and F. Sadri, The situation calculus and event calculus compared, in: Proc. of ILPS 94 (MIT Press, 1994) pp. 539–553.

  37. R. Li and L.M. Pereira, Temporal reasoning with abductive logic programming, in: Proc. of ECAI 96 (1996) pp. 13–17.

  38. R. Li and L.M. Pereira, What is believed is what is explained (sometimes), in: Proc. of AAAI 96 (1996) pp. 550–555.

  39. R. Li and L.M. Pereira, Updating temporal knowledge bases with the possible causes approach, in: Artificial Intelligence: Methodology, Systems, Applications, ed. A.M. Ramsay (IOS Press, 1996) pp. 148–157.

  40. R. Li and L.M. Pereira, Knowledge-based situated agents among us, in: Intelligent Agents III — Proc. of the Third International Workshop on Agent Theories. Architectures, and Languages (ATAL 96), eds. J.P. Muller, M.J. Wooldridge and N.R. Jennings, LNAI (Springer, 1997).

    Google Scholar 

  41. V. Lifschitz, Towards a metatheory of action, in: Proc. of KR 91 (Morgan Kaufmann) pp. 376–386.

  42. V. Lifschitz, Formal theories of action, in: The Frame Problem in Artificial Intelligence (Morgan Kaufmann, 1987) pp. 35–57.

  43. V. Lifschitz, Nested abnormal theories, Manuscript, University of Texas at Austin (1994).

    Google Scholar 

  44. V. Lifschitz and A. Robinov, Miracles in formal theories of action, Artificial Intelligence 38(2) (1989) 225–237.

    Article  MATH  MathSciNet  Google Scholar 

  45. V. Lifschitz, Pointwise circumscription, in: Readings in Nonmonotonic Reasoning, ed. M.L. Ginsberg (Morgan Kaufmann, 1987) pp. 410–423.

  46. F. Lin and Y. Shoham, Provably correct theories of actions: preliminary report, in: Proc. of AAAI 91 (1991).

  47. F. Lin and Y. Shoham, Concurrent actions in the situation calculus, in: Proc. of AAAI 92 (1992) pp. 590–595.

  48. J.W. Lloyd and R.W. Topor, Making prolog more expressive, Journal of Logic Programming 1(3) (1984) 225–240.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. McCarthy and P.J. Hayes, Some philosophical problems from the stand-point of artificial intelligence, in: Machine Intelligence 4, eds. B. Meltzer and D. Michie (Edinburgh, 1969) pp. 463–502.

  50. J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence 28 (1986) 89–116.

    Article  MathSciNet  Google Scholar 

  51. P. Morris, The Anomalous extension problem in default reasoning, Artificial Intelligence 35(3) (1988) 383–399.

    Article  MATH  MathSciNet  Google Scholar 

  52. E.P.D. Pednault, ADL: Exploring the middle ground between STRIPS and the situation calculus, in: Proc. of KR 89, eds. R.J. Brachman, H. Levesque and R. Reiter (Morgan Kaufmann) pp. 324–332.

  53. E.P.D. Pednault, ADL and the state-transition model, Journal of Logic and Computation 4(5) (1994) 467–517.

    MATH  MathSciNet  Google Scholar 

  54. L.M. Pereira and J.J. Alferes, Well-founded semantics for logic programs with explicit negation, in: European Conf. on Artificial Intelligence, ed. B. Neumann (Wiley, 1992) pp. 102–106.

  55. L.M. Pereira, J.J. Alferes and J.N. Aparício, Nonmonotonic reasoning with well founded semantics, in: Proc. of 8th ICLP, ed. K. Furukawa (MIT Press, 1991) pp. 475–489.

  56. L.M. Pereira, J.N. Aparício and J.J. Alferes, Non-monotonic reasoning with logic programming, Journal of Logic Programming 17(2,3,4), Special issue on Nonmonotonic Reasoning (1993) 227–263.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Pinto and R. Reiter, Temporal reasoning in logic programming: A case for the situation calculus, in: Proc. of ICLP 93 (MIT Press) pp. 203–221.

  58. D. Poole, Representing diagnosis knowledge, Annals of Math. and AI 11 (1994) 33–50.

    MATH  MathSciNet  Google Scholar 

  59. T. Przymusinski, On the declarative semantics of stratified deductive databases and logic programs, in: Foundations of Deductive Databases and Logic Programming, ed. J. Minker (Morgan Kaufmann, 1987) pp. 193–216.

  60. J.A. Reggia, D.S. Nau and Y. Wang, A formal model of diagnostic inference I: Problem formulation and decomposition, Info. Sci 37 (1985) 227–256.

    Article  MATH  Google Scholar 

  61. R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.

    Article  MATH  MathSciNet  Google Scholar 

  62. R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32(1) (1987) 57–96.

    Article  MATH  MathSciNet  Google Scholar 

  63. R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression, in: Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, ed. V. Lifschitz (Academic Press, San Diego, CA, 1991) pp. 359–380.

    Google Scholar 

  64. E. Sandewall, Filter preferential entailment for the logic of action in almost continuous worlds, in: Proc. of IJCAI 89 (Morgan Kaufmann, 1989).

  65. E. Sandewall, in: Features and Fluents: The Representation of Knowledge about Dynamic Systems, Vol. 1 (Oxford University Press, 1994).

  66. E. Sandewall, The range of applicability of some non-monotonic logics for strict inertia, Journal of Logic and Computation 4(5) (1994) 581–615.

    MATH  MathSciNet  Google Scholar 

  67. K. Satoh and N. Iwayama, A query evaluation method for abductive logic programming, in: Logic Programming: Proc. of 1992 Int. Joint Conference and Symposium, ed. Apt (1992) pp. 671–685.

  68. Y. Shoham, Reasoning about Change (MIT Press, 1987).

  69. M. Shanahan, Prediction is deduction but explanation is abduction, in: Proc. IJCAI 89 (Morgan Kaufmann, 1989) pp. 1055–1061.

  70. M. Shanahan, Explanation in the situation calculus, in: Proc. of IJCAI 93 (Morgan Kaufmann, 1993) pp. 160–165.

  71. L.A. Stein and L. Morgenstern, Motivated action theory: a formal theory of causal reasoning, Artificial Intelligence 71 (1994) 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  72. A. Van Gelder, K. Ross and J.S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (1991) 620–650.

    Article  MATH  MathSciNet  Google Scholar 

  73. G. Wagner, Vivid Logic, Lecture Notes in Artificial Intelligence 764 (Springer, 1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Pereira, L.M. Representing and reasoning about concurrent actions with abductive logic programs. Annals of Mathematics and Artificial Intelligence 21, 245–303 (1997). https://doi.org/10.1023/A:1018921603877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018921603877

Keywords

Navigation