Pharmaceutical Research

, Volume 9, Issue 2, pp 178–181 | Cite as

Potentiation of Cytotoxicity of Mitoxantrone Toward CHO-K1 Cells in Vitro by Dipyridamole

  • Pankaj B. Desai
  • Rajagopalan Sridhar


Dipyridamole (DP), a clinically used vasodilator and an antiplatelet compound, augmented the activity of the anticancer drug mitoxantrone (MXN) toward Chinese hamster ovary (CHO-K1) cells in culture. Clonogenic assays indicated that DP (1.0, 2.5, and 5.0 µM) decreased the survival of cells treated with MXN (5 to 25 nM) in a dose-dependent manner. Further, DP (1 and 5 nM) decreased the MXN concentration required for 50% inhibition of cell growth from 3.2 to 1.8 and from 3.0 to 0.5 nM, respectively, over a period of 3 days. DP (10 µM) increased the accumulation of MXN by 1.8-fold in exponentially growing cells exposed to MXN. The enhanced levels of MXN in CHO-K1 cells in the presence of the chemosensitizer may account for the potentiation of MXN-cytotoxicity by DP.

mitoxantrone cytotoxicity chemosensitization CHO-K1 cells dipyridamole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. C. Murdock, R. G. Child, P. F. Fabio, R. B. Angier, R. E. Wallace, F. E. Durr, and R. V. Citarella. Antitumor agents. I. 1,4-Bis[(aminoalkyl)amino]-9,10 anthracenedione. J. Med. Chem. 22:1024–1030 (1979).Google Scholar
  2. 2.
    I. E. Smith. Mitoxantrone (Novantrone): A review of experimental and early clinical studies. Cancer Treat. Rev. 10:103–115 (1983).Google Scholar
  3. 3.
    T. I. Poirier. Mitoxantrone. Drug Intell. Clin. Pharm. 20:97–105 (1986).Google Scholar
  4. 4.
    J. Koeller and M. Eble. Mitoxantrone: A novel anthracycline derivative. Clin. Pharm. 7:574–581 (1988).Google Scholar
  5. 5.
    G. T. Bowden, R. Roberts, D. S. Alberts, Y. M. Peng, and D. Garcia. Comparative molecular pharmacology in leukemic L1210 cells of the anthracene anticancer drugs mitoxantrone and bisantrene. Cancer Res. 45:4915–4920 (1985).Google Scholar
  6. 6.
    P. A. Paciucci, T. Ohnuma, J. Cuttner, R. T. Silver, and J. F. Holland. Mitoxantrone in patients with acute leukemia in relapse. Cancer Res. 43:3919–3922 (1983).Google Scholar
  7. 7.
    J. A. Nelson and S. Drake. Potentiation of methotrexate toxicity by dipyridamole. Cancer Res. 44:2493–2496 (1984).Google Scholar
  8. 8.
    J. L. Grem and P. H. Fischer. Augmentation of 5-fluorouracil cytotoxicity in human colon cancer cells by dipyridamole. Cancer Res. 45:2967–2972 (1985).Google Scholar
  9. 9.
    Y. S. Zhen, M. S. Lui, and G. Weber. Effects of acivicin and dipyridamole on hepatoma 3924A cells. Cancer Res. 43:1616–1619 (1983).Google Scholar
  10. 10.
    T. C. K. Chan, M. Markman, S. Cleary, and S. B. Howell. Plasma uridine changes in cancer patients treated with the combination of dipyridamole and N-phosphonacetyl-L-aspartate. Cancer Res. 46:3168–3172 (1986).Google Scholar
  11. 11.
    J. K. V. Willson, P. H. Fischer, K. Tusch, D. Alberti, K. Simon, R. D. Hamilton, J. Bruggink, J. M. Koeller, D. C. Tormey, R. H. Earhart, A. Ranhosky, and D. L. Trump. Phase I clinical trial of a combination of dipyridamole and acivicin based upon inhibition of nucleoside salvage. Cancer Res. 48:5585–5590 (1988).Google Scholar
  12. 12.
    G. T. Budd, A. Jayaraj, D. Grabowski, D. Adelstein, L. Bauer, J. Boyett, R. Bukowski, S. Murthy, and J. Weick. Phase I trials of dipyridamole with 5-fluorouracil and folinic acid. Cancer Res. 50:7206–7211 (1990).Google Scholar
  13. 13.
    H. Kusumoto, Y. Maehara, H. Anai, T. Kusumoto, and K. Sugimachi. Potentiation of adriamycin cytotoxicity by dipyridamole against Hela cells in vitro and sarcoma 180 cells in vivo. Cancer Res. 48:1208–1212 (1988).Google Scholar
  14. 14.
    S. B. Howell, D. Hom, R. Sanga, J. S. Vick, and I. S. Abramason. Comparison of the synergistic potentiation of etoposide, doxorubicin and vinblastine cytotoxicity by dipyridamole. Cancer Res. 49:3178–3183 (1989).Google Scholar
  15. 15.
    S. B. Howell, D. K. Hom, R. Sanga, J. S. Vick, and T. C. K. Chan. Dipyridamole enhancement of etoposide sensitivity. Cancer Res. 49:4147–4153 (1989).Google Scholar
  16. 16.
    T. D. Bjornsson and C. Mahony. Clinical pharmacokinetics of dipyridamole. Thromb. Res. Suppl. IV:93–104 (1983).Google Scholar
  17. 17.
    C. Mahony, K. M. Wolfram, D. M. Cocchetto, and T. D. Bjornsson. Dipyridamole Kinetics. Clin. Pharmacol. Ther. 31:330–338 (1982).Google Scholar
  18. 18.
    S. A. Carlsen, J. A. Till, and V. Ling. Modulation of drug permeability in chinese hamster ovary cells. Possible role for phosphorylation of surface glycoproteins. Biochim. Biophys. Acta 467:238–250 (1977).Google Scholar
  19. 19.
    K. Caldecott, G. Banks, and P. Jeggo. DNA double-strand break repair pathways and cellular tolerance to inhibitors of topoisomerase II. Cancer Res. 50:5778–5779 (1990).Google Scholar
  20. 20.
    M. Chatterjee, C. N. Robson, and A. L. Harris. Reversal of multidrug resistance by verapamil and modulation by α1-acid glycoprotein in wild type and multidrug resistant chinese hamster ovary cell lines. Cancer Res. 50:2818–2822 (1990).Google Scholar
  21. 21.
    M. D. Crespi, S. E. Ivanier, J. Genovese, and A. Baldi. Mitoxantrone affects topoisomerase II activity in human breast cancer cells. Biochem. Biophys. Res. Commun. 136:521–528 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Pankaj B. Desai
    • 1
  • Rajagopalan Sridhar
    • 1
    • 2
  1. 1.Department of Basic Pharmaceutical Sciences, College of PharmacyUniversity of South CarolinaColumbia
  2. 2.Department of Radiation Therapy and Cancer CenterHoward UniversityWashington

Personalised recommendations