Skip to main content
Log in

Effect of Some Penetration Enhancers on Epithelial Membrane Lipid Domains: Evidence from Fluorescence Spectroscopy Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of the penetration enhancers Azone, oleic acid, 1-dodecanol, dodecyl N,N-dimethylaminoacetate (DDAA), and dodecyl N,N-dimethylaminoisopropionate (DDAIP) on epithelial membrane lipids was examined using human buccal cell membranes as a model for epithelial lipid bilayer. Buccal epithelial cells (BEC) were labeled with l,6-diphenyl-l,3,5-hexatriene (DPH), l-(4-(trimethylammonio)phenyl)-6-phenyl-l,3,5-hexatriene (TMA-DPH), and 8-anilino-l-naphthalene sulphonic acid (ANS) fluorophores to characterize enhancer-induced changes in the hydrophobic core, in the superficial polar head region, and on the exterior surface, respectively, with fluorescence anisotropy and fluorescence lifetimes. All the enhancers studied were found to decrease the BEC membrane lipid packing order in a concentration-dependent and time-dependent manner in the deep bilayer region, as shown by a 37–66% decrease in anisotropy. Oleic acid was also found to disrupt membrane lipids strongly in the polar head region, causing at least a 34% decrease in anisotropy values. Azone and DDAA were shown to alter molecular movement on the surface of the bilayers (24 and 19% decrease in anisotropy, respectively). The results suggest that interaction with membrane lipid domains is an important, but not the only, mode of action for the penetration enhancers studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. M. Elias and D. S. Friend. The permeability barrier in mammalian epidermis. J. Cell Biol. 65:180–191 (1975).

    Google Scholar 

  2. P. M. Elias, J. Goerke, and D. S. Friend. Mammalian epidermal barrier layer lipids: Composition and influence on structure. J. Invest. Dermatol. 69:535–546 (1977).

    Google Scholar 

  3. C. A. Squier and R. M. Hopps. A study of the permeability barrier in epidermis and oral epithelium using horseradish peroxidase as a tracer in vitro. Br. J. Dermatol. 95:123–129 (1976).

    Google Scholar 

  4. G. M. Golden, D. B. Guzek, A. H. Kennedy, J. E. McKie, and R. O. Potts. Stratum corneum lipid phase transitions and water barrier properties. Biochemistry 26:2382–2388 (1987).

    Google Scholar 

  5. V. H. W. Mak, R. O. Potts, and R. H. Guy. Oleic acid concentration and effect in human stratum corneum: Noninvasive determination by attenuated total reflectance infrared spectroscopy in vivo. J. Control Rel. 12:67–75 (1990).

    Google Scholar 

  6. M. L. Francoeur, G. M. Golden, and R. O. Potts. Oleic acid: Its effects on stratum corneum in relation to (trans)dermal drug delivery. Pharm. Res. 7:621–627 (1990).

    Google Scholar 

  7. W. J. Van Blitterswijk, R. P. van Hoeven, and B. W. Van der Meer. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim. Biophys. Acta 644:323–332 (1981).

    Google Scholar 

  8. H. Pottel, B. W. Van der Meer, and W. Herreman. Correlation between the order parameter and the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and an evaluation of membrane fluidity. Biochim. Biophys. Acta 730:181–186 (1983).

    Google Scholar 

  9. F. G. Prendergast, R. P. Haugland, and P. J. Callahan. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: Synthesis, fluorescence properties and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338 (1981).

    Google Scholar 

  10. C. A. Squier, P. Cox, and P. W. Wertz. Lipid content and water permeability of skin and oral mucosa. J. Invest. Dermatol. 96:123–126 (1991).

    Google Scholar 

  11. O. Wong, J. Huntington, T. Nishihata, and J. H. Rytting. New alkyl N,N-dialkyl-substituted amino acetates as transdermal penetration enhancers. Pharm. Res. 6:286–295 (1989).

    Google Scholar 

  12. S. Buyuktimkin, N. Buyuktimkin, and J. H. Rytting. Synthesis and enhancing effect of 2-dodecyl transepidermal (N,N-dimethylamino) propionate (DDAIP) on the delivery of indomethacin, clonidine and hydrocortisone. Pharm. Res. 10:1632–1637 (1993).

    Google Scholar 

  13. K. L. Audus and M. A. Gordon. Effect of tricylic antidepressant drugs on lymphocyte membrane structure. J. Immunopharmacol. 6:105–132 (1984).

    Google Scholar 

  14. G. M. Omann, Z. G. Oades, and L. A. Sklar. Simultaneous spectrofluorometric analyses of cell responses. BioTechniques 3:508–512 (1985).

    Google Scholar 

  15. J. R. Lakowicz. Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.

    Google Scholar 

  16. L. A. Sklar. Fluorescence polarization studies of membrane fluidity: Where do we go from here? In M. Kates and L. A. Manson (eds.), Biomembranes, Vol. 12, Plenum Press, New York, 1984, pp. 99–131.

    Google Scholar 

  17. M. Donner, S. Muller, and J. F. Stoltz. Fluorescence depolarization method in the study of dynamic properties of blood cells. Biorheology 27:367–374 (1990).

    Google Scholar 

  18. M. T. Flanagan and T. R. Hesketh. Electrostatic interactions in the binding of fluorescent probes to lipid membranes. Biochim. Biophys. Acta 298:535–545 (1973).

    Google Scholar 

  19. R. O. Potts, N. Azimi, T. S. Spencer, D. A. Chen, and F. E. Lytle. Fluorescence spectroscopic evaluation of stratum corneum lipids. Proc. Int. Symp. Control Rel. Bioact. Mater. 19:141–142 (1992).

    Google Scholar 

  20. E. LeCluyse, L. Appel, and S. C. Sutton. Relationship between drug absorption enhancing activity and membrane perturbing effects of acylcarnitines. Pharm. Res. 8:84–87 (1991).

    Google Scholar 

  21. D. Bommannan, R. O. Potts, and R. H. Guy. Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J. Control. Rel. 16:299–304 (1991).

    Google Scholar 

  22. T. Kurihara-Bergstrom, K. Knutson, L. DeNoble, and C. Y. Goates. Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin. Pharm. Res. 7:762–766 (1990).

    Google Scholar 

  23. V. H. W. Mak, R. O. Potts, and R. H. Guy. Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm. Res. 7:835–841 (1990).

    Google Scholar 

  24. K. Sugibayashi, S. Nakayama, T. Seki, K.-I. Hosoya, and Y. Morimoto. Mechanism of skin penetration-enhancing effect by laurocapram. J. Pharm. Sci. 81:58–64 (1992).

    Google Scholar 

  25. W. J. Lambert, W. I. Higuchi, K. Knutson, and S. L. Krill. Dose-dependent enhancement effects of Azone on skin permeability. Pharm. Res. 6:798–803 (1989).

    Google Scholar 

  26. J. Hirvonen, J. H. Rytting, P. Paronen, and A. Urtti. Dodecyl N,N-dimethylamino acetate and Azone enhance drug penetration across human, snake and rabbit skin. Pharm. Res. 8:933–937 (1991).

    Google Scholar 

  27. T. M. Turunen, S. Buyuktimkin, N. Buyuktimkin, A. Urtti, P. Paronen, and J. H. Rytting. Enhanced delivery of 5-fluorouracil through shed snake skin by two new transdermal penetration enhancers. Int. J. Pharm. 92:89–95 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turunen, T.M., Urtti, A., Paronen, P. et al. Effect of Some Penetration Enhancers on Epithelial Membrane Lipid Domains: Evidence from Fluorescence Spectroscopy Studies. Pharm Res 11, 288–294 (1994). https://doi.org/10.1023/A:1018919811227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018919811227

Navigation