Skip to main content

Probabilities of causation: Bounds and identification

Abstract

This paper deals with the problem of estimating the probability of causation, that is, the probability that one event was the real cause of another, in a given scenario. Starting from structural‐semantical definitions of the probabilities of necessary or sufficient causation (or both), we show how to bound these quantities from data obtained in experimental and observational studies, under general assumptions concerning the data‐generating process. In particular, we strengthen the results of Pearl [39] by presenting sharp bounds based on combined experimental and nonexperimental data under no process assumptions, as well as under the mild assumptions of exogeneity (no confounding) and monotonicity (no prevention). These results delineate more precisely the basic assumptions that must be made before statistical measures such as the excess‐risk‐ratio could be used for assessing attributional quantities such as the probability of causation.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Aldrich, Cowles' exogeneity and core exogeneity, Technical Report Discussion Paper 9308, Department of Economics, University of Southampton, England (1993).

  2. [2]

    L.A. Bailey, L. Gordis and M. Green, Reference guide on epidemiology, Reference Manual on Scientific Evidence, Federal Judicial Center (1994) Available online at http://www.fjc.gov/EVIDENCE/science/sc_ev_sec.html.

  3. [3]

    A. Balke, Probabilistic counterfactuals: Semantics, computation, and applications, Ph.D. thesis, Computer Science Department, University of California, Los Angeles, CA (November 1995).

  4. [4]

    A. Balke and J. Pearl, Probabilistic evaluation of counterfactual queries, in: Proceedings of the Twelfth National Conference on Artificial Intelligence, Vol. I (MIT Press, Menlo Park, CA, 1994) pp. 230-237.

    Google Scholar 

  5. [5]

    A. Balke and J. Pearl, Counterfactuals and policy analysis in structural models, in: Uncertainty in Artificial Intelligence, Vol. 11, eds. P. Besnard and S. Hanks (Morgan Kaufmann, San Francisco, CA, 1995) pp. 11-18.

    Google Scholar 

  6. [6]

    A. Balke and J. Pearl, Nonparametric bounds on causal effects from partial compliance data, Journal of the American Statistical Association 92(439) (1997) 1-6.

    Article  Google Scholar 

  7. [7]

    J.S. Breese and D. Heckerman, Decision-theoretic troubleshooting: A framework for repair and experiment, in: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, eds. E. Horvitz and F. Jensen (Morgan Kaufmann, San Francisco, CA, 1996) pp. 124-132.

    Google Scholar 

  8. [8]

    P.W. Cheng, From covariation to causation: A causal power theory, Psychological Review 104(2) (1997) 367-405.

    Article  Google Scholar 

  9. [9]

    P. Cole, Causality in epidemiology, health policy, and law, Journal of Marketing Research 27 (1997) 10279-10285.

    Google Scholar 

  10. [10]

    A.P. Dawid, Causal inference without counterfactuals, Technical Report, Department of Statistical Science, University College London, UK, 1997. Forthcoming, with discussion, Journal of the American Statistical Association, 2000.

  11. [11]

    P.J. Dhrymes, Econometrics (Springer, New York, 1970).

    Google Scholar 

  12. [12]

    R.F. Engle, D.F. Hendry and J.F. Richard, Exogeneity, Econometrica 51 (1983) 277-304.

    MATH  MathSciNet  Article  Google Scholar 

  13. [13]

    K. Fine, Reasoning with Arbitrary Objects (B. Blackwell, New York, 1985).

    Google Scholar 

  14. [14]

    F.M. Fisher, A correspondence principle for simultaneous equations models, Econometrica 38(1) (1970) 73-92.

    Article  Google Scholar 

  15. [15]

    D.A. Freedman and P.B. Stark, The swine flu vaccine and Guillain-Barr´e syndrome: A case study in relative risk and specific causation, Evaluation Review 23(6) (1999) 619-647.

    Article  Google Scholar 

  16. [16]

    D. Galles and J. Pearl, Testing identifiability of causal effects, in: Uncertainty in Artificial Intelligence, Vol. 11, eds. P. Besnard and S. Hanks (Morgan Kaufmann, San Francisco, CA, 1995) pp. 185-195.

    Google Scholar 

  17. [17]

    D. Galles and J. Pearl, Axioms of causal relevance, Artificial Intelligence 97(1-2) (1997) 9-43.

    MATH  MathSciNet  Article  Google Scholar 

  18. [18]

    D. Galles and J. Pearl, An axiomatic characterization of causal counterfactuals, Foundations of Science 3(1) (1998) 151-182.

    MathSciNet  Article  Google Scholar 

  19. [19]

    C. Glymour, Psychological and normative theories of causal power and the probabilities of causes, in: Uncertainty in Artificial Intelligence, eds. G.F. Cooper and S. Moral (Morgan Kaufmann, San Francisco, CA, 1998) pp. 166-172.

    Google Scholar 

  20. [20]

    I.J. Good, A causal calculus, I, British Journal for the Philosophy of Science 11 (1961) 305-318.

    MathSciNet  Google Scholar 

  21. [21]

    I.J. Good, A tentative measure of probabilistic causation relevant to the philosophy of the law, Journal of Statistical Computation and Simulation 47 (1993) 99-105.

    Google Scholar 

  22. [22]

    N. Hall, Two concepts of causation (1998) in press.

  23. [23]

    J.Y. Halpern, Axiomatizing causal reasoning, in: Uncertainty in Artificial Intelligence, eds. G.F. Cooper and S. Moral (Morgan Kaufmann, San Francisco, CA, 1998) pp. 202-210.

    Google Scholar 

  24. [24]

    J.Y. Halpern and J. Pearl, Causes and explanations: A structural-model approach, Technical Report R-266, Cognitive System Laboratory, Department of Computer Science, University of California, Los Angeles (March 2000).

  25. [25]

    D.F. Hendry, Dynamic Econometrics (Oxford University Press, New York, 1995).

    MATH  Google Scholar 

  26. [26]

    C.H. Hennekens and J.E. Buring, Epidemiology in Medicine (Brown, Little, Boston, 1987).

  27. [27]

    G.W. Imbens, Book reviews, Journal of Applied Econometrics 12 (1997).

  28. [28]

    J.L. Kelsey, A.S. Whittemore, A.S. Evans and W.D. Thompson, Methods in Observational Epidemiology (Oxford University Press, New York, 1996).

    Google Scholar 

  29. [29]

    M.J. Khoury, W.D. Flanders, S. Greenland and M.J. Adams, On the measurement of susceptibility in epidemiologic studies, American Journal of Epidemiology 129(1) (1989) 183-190.

    Google Scholar 

  30. [30]

    J. Kim, Causes and events: Mackie on causation, Journal of Philosophy 68 (1971) 426-471. Reprinted in: Causation, eds. E. Sosa and M. Tooley (Oxford University Press, 1993).

  31. [31]

    D. Lewis, Philosophical Papers (Oxford University Press, New York, 1986).

    Google Scholar 

  32. [32]

    J.L. Mackie, Causes and conditions, American Philosophical Quarterly 2/4 (1965) 261-264. Reprinted in: Causation, eds. E. Sosa and M. Tooley (Oxford University Press, 1993).

  33. [33]

    J. Marschak, Statistical inference in economics, in: Statistical Inference in Dynamic Economic Models, ed. T. Koopmans (Wiley, New York, 1950) pp. 1-50. Cowles Commission for Research in Economics, Monograph 10.

    Google Scholar 

  34. [34]

    D. Michie, Adapting Good's q theory to the causation of individual events, Machine Intelligence 15 (2000).

  35. [35]

    J.S. Mill, System of Logic, Vol. 1 (John W. Parker, London, 1843).

  36. [36]

    J. Pearl, Comment: Graphical models, causality, and intervention, Statistical Science 8 (1993) 266-269.

    Google Scholar 

  37. [37]

    J. Pearl, A probabilistic calculus of actions, in: Uncertainty in Artificial Intelligence, Vol. 10, eds. R. Lopez de Mantaras and D. Poole (Morgan Kaufmann, San Mateo, CA, 1994) pp. 454-462.

    Google Scholar 

  38. [38]

    J. Pearl, Causal diagrams for experimental research, Biometrika 82 (1995) 669-710.

    MATH  MathSciNet  Article  Google Scholar 

  39. [39]

    J. Pearl, Probabilities of causation: three counterfactual interpretations and their identification, Synthese 121(1-2) (1999) 93-149.

    MATH  MathSciNet  Article  Google Scholar 

  40. [40]

    J. Pearl, Causality: Models, Reasoning, and Inference (Cambridge University Press, NY, 2000).

    MATH  Google Scholar 

  41. [41]

    D.W. Robertson, The common sense of cause in fact, Texas Law Review 75(7) (1997) 1765-1800.

    Google Scholar 

  42. [42]

    J.M. Robins, A new approach to causal inference in mortality studies with a sustained exposure period-applications to control of the healthy workers survivor effect, Mathematical Modeling 7 (1986) 1393-1512.

    MATH  MathSciNet  Article  Google Scholar 

  43. [43]

    J.M. Robins, A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods, Journal of Chronic Diseases 40(Suppl 2) (1987) 139S-161S.

    Article  Google Scholar 

  44. [44]

    J.M. Robins and S. Greenland, The probability of causation under a stochastic model for individual risk, Biometrics 45 (1989) 1125-1138.

    MATH  MathSciNet  Article  Google Scholar 

  45. [45]

    P. Rosenbaum and D. Rubin, The central role of propensity score in observational studies for causal effects, Biometrica 70 (1983) 41-55.

    MATH  MathSciNet  Article  Google Scholar 

  46. [46]

    J.J. Schlesselman, Case-Control Studies: Design Conduct Analysis (Oxford University Press, New York, 1982).

    Google Scholar 

  47. [47]

    M.C. Shep, Shall we count the living or the dead? New England Journal of Medicine 259 (1958) 1210-1214.

    Article  Google Scholar 

  48. [48]

    H.A. Simon, Causal ordering and identifiability, in: Studies in Econometric Method, eds. Wm.C. Hood and T.C. Koopmans (Wiley, New York, 1953) pp. 49-74.

    Google Scholar 

  49. [49]

    H.A. Simon and N. Rescher, Cause and counterfactual, Philosophy and Science 33 (1966) 323-340.

    Article  Google Scholar 

  50. [50]

    M.E. Sobel, Effect analysis and causation in linear structural equation models, Psychometrika 55(3) (1990) 495-515.

    MathSciNet  Article  Google Scholar 

  51. [51]

    P. Spirtes, C. Glymour and R. Scheines, Causation, Prediction, and Search (Springer, New York, 1993).

    MATH  Google Scholar 

  52. [52]

    R.H. Strotz and H.O.A. Wold, Recursive versus nonrecursive systems: An attempt at synthesis, Econometrica 28 (1960) 417-427.

    MathSciNet  Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tian, J., Pearl, J. Probabilities of causation: Bounds and identification. Annals of Mathematics and Artificial Intelligence 28, 287–313 (2000). https://doi.org/10.1023/A:1018912507879

Download citation

Keywords

  • Causal Effect
  • Causal Model
  • Causal Power
  • Causal Graph
  • Joint Probability Function