Skip to main content
Log in

Tensor-product monotonicity preservation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies systems of tensor-product functions for which the functions they span are monotonic in any direction when their control nets are monotonic in that direction. It is shown that Bernstein polynomials and B-splines have this property but that totally positive systems in general, such as certain trigonometric and rational bases, do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Carnicer, M.S. Floater and J.M. Peña, Linear convexity conditions for rectangular and triangular Bernstein–Bézier surfaces, Comput. Aided Geom. Design 15 (1997) 27–38.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.M. Carnicer, M. García-Esnaola and J.M. Peña, Convexity of rational curves and total positivity, J. Comput. Appl. Math. 71 (1996) 365–382.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Carnicer and J.M. Peña, Monotonicity preserving representations, in: Curves and Surfaces II, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Boston, 1994) pp. 83–90.

    Google Scholar 

  4. A.S. Cavaretta and A. Sharma, Variation diminishing properties and convexity for the tensor product Bernstein operator, in: Lecture Notes in Mathematics 511 (Springer, Berlin, 1990) pp. 18–32.

    Google Scholar 

  5. G. Farin, Curves and Surfaces for Computer Aided Geometric Design (Academic Press, Boston, 1988).

    Google Scholar 

  6. M.S. Floater, A weak condition for the convexity of tensor-product Bézier and B-spline surfaces, Adv. Comput. Math. 2 (1994) 67–80.

    MATH  MathSciNet  Google Scholar 

  7. M.S. Floater and J.M. Peña, Monotonicity preservation on triangles (1997, submitted).

  8. T.N.T. Goodman, Shape preserving representations, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, New York, 1989) pp. 333–357.

    Google Scholar 

  9. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design (A.K. Peters, Wellesley, MA, 1994).

    MATH  Google Scholar 

  10. B. Jüttler, Surface fitting using convex tensor-product splines, J. Comput. Appl. Math. 84 (1997) 23–44.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Karlin, Total Positivity (Stanford University Press, Stanford, 1968).

    MATH  Google Scholar 

  12. J.M. Peña, Shape preserving representations for trigonometric polynomial curves, Comput. Aided Geom. Design 14 (1997) 5–11.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Sánchez-Reyes, Single valued surfaces in spherical coordinates, Comput. Aided Geom. Design 11 (1994) 491–517.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Strøm, On convolutions of B-splines, J. Comput. Appl. Math. 55 (1994) 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Willemans and P. Dierckx, Smoothing scattered data with a monotone Powell–Sabin spline surface, Numer. Algorithms 12 (1996) 215–232.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. Yad-Shalom, Monotonicity preserving subdivision schemes, J. Approx. Theory 74 (1993) 41–58.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floater, M.S., Peña, J. Tensor-product monotonicity preservation. Advances in Computational Mathematics 9, 353–362 (1998). https://doi.org/10.1023/A:1018906027191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018906027191

Navigation