Skip to main content
Log in

The Physicochemical Properties, Plasma Enzymatic Hydrolysis, and Nasal Absorption of Acyclovir and Its 2′-Ester Prodrugs

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A series of 2′-(O-acyl) derivatives of 9-(2-hydoxyethoxymethyl)guanine (acyclovir) was synthesized by acid anhydride esterification. Aqueous solubilities in isotonic phosphate buffer (pH 7.4), partition coefficients in 1-octanol/phosphate buffer, and hydrolysis kinetics in rat plasma were determined. The ester prodrugs showed consistent increases in lipophilicity with corresponding decreases in aqueous solubility as a function of side-chain length. The bioconversion kinetics of the prodrugs appear to depend on both the apolar and the steric nature of the acyl substituents. When perfused through the rat nasal cavity using the in situ perfusion technique, acyclovir showed no measurable loss from the perfusate. Nasal uptake of acyclovir prodrugs, on the other hand, were moderately improved. Furthermore, the extent of nasal absorption appears to depend on the lipophilicity of the prodrugs in the descending order hexanoate > valerate > pivalate > butyrate. Simultaneous prodrug cleavage by nasal carboxylesterase was also noted in the case of hexanoate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. W. Chien, K. S. E. Su, and S. F. Chang. Nasal Systemic Drug Delivery, Marcel Dekker, New York, 1989.

    Google Scholar 

  2. P. Tengamnuay and A. K. Mitra. Bile salt-fatty acid mixed micelles as nasal absorption promoters of peptides. II. In vivo nasal absorption of insulin in rats and effects of mixed micelles on the morphological integrity of the nasal mucosa. Pharm. Res. 7:370–375 (1990).

    MATH  Google Scholar 

  3. S. Hirai, T. Yashiki, and H. Mima. Effects of surfactants on the absorption of insulin in rats. Int. J. Pharm. 9:165–172 (1981).

    Google Scholar 

  4. J. P. Longenecker A. C. Moses, J. S. Flier, R. D. Silver, M. C. Carey, and E. J. Dubovi. Effects of sodium taurodihydrofusidate on nasal absorption of insulin in sheep. J. Pharm. Sci. 76:351–355 (1987).

    Google Scholar 

  5. M. J. M. Deurloo, W. A. J. J. Hermens, S. G. Romeyn, J. C. Verhoef, and F. W. H. M. Merkus. Absorption enhancement of intranasally administered insulin by sodium taurodihydrofusidate (STDHF) in rabbits and rats. Pharm. Res. 6:853–856 (1989).

    Google Scholar 

  6. P. A. Baldwin, C. K. Klingbell, C. J. Grimm, and J. P. Longenecker. The effect of sodium tauro-24, 25-dihydrofusidate on the nasal absorption of human growth hormone in three animal models. Pharm. Res. 7:547–552 (1990).

    Google Scholar 

  7. M. Mishima, Y. Wakita, and M. Nakano. Studies on the promoting effects of medium chain fatty acid salts on the nasal absorption of insulin in rats. J. Pharmacobiodyn. 10:624–631 (1987).

    Google Scholar 

  8. S. Hirai, T. Yashiki, and H. Mima. Mechanisms for the enhancement of the nasal absorption of insulin by surfactants. Int. J. Pharm. 9:173–184 (1981).

    Google Scholar 

  9. M. D. Donovan, G. L. Flynn, and G. L. Amidon. The molecular weight dependence of nasal absorption enhancers. Pharm. Res. 7:808–815 (1990).

    Google Scholar 

  10. Z. Shao, R. Krishnamoorthy, and A. K. Mitra. Cyclodextrins as nasal absorption promoters of insulin: Mechanistic evaluations. Pharm. Res. 9:1157–1163 (1992).

    Google Scholar 

  11. Z. Shao and A. K. Mitra. Nasal membrane and intracellular protein and enzyme release by bile salts and bile salt-fatty acid mixed micelles: Correlation with facilitated drug transport. Pharm. Res. 9:1184–1189 (1992).

    Google Scholar 

  12. T. Kissel, J. Drewe, S. Bantle, A. Rummelt, and C. Beglinger. Tolerability and absorption enhancement of intranasally administered octreotide by sodium taurodihydrofusidate in healthy subjects. Pharm. Res. 9:52–57 (1992).

    Google Scholar 

  13. C. H. Huang, R. Kimura, R. B. Nassar, and A. Hussain. Mechanism of nasal absorption of drugs. I. Physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. J. Pharm. Sci. 74:608–611 (1985).

    Google Scholar 

  14. C. H. Huang, R. Kimura, R. Bawarshi-Nassar, and A. Hussain. Mechanism of nasal absorption of drugs. II. Absorption of L-tyrosine and the effect of structural modification on its absorption. J. Pharm. Sci. 74:1298–1301 (1985).

    Google Scholar 

  15. D. C. Corbo, Y. C. Huang, and Y. W. Chien. Nasal delivery of progestational steroids in ovariectomized rabbits. II. Effect of penetrant hydrophilicity. Int. J. Pharm. 50:253–260 (1989).

    Google Scholar 

  16. D. C. Corbo, J.-C. Liu, and Y. W. Chien. Drug absorption through mucosal membranes: Effect of mucosal route and penetrant hydrophilicity. Pharm. Res. 6:848–852 (1989).

    Google Scholar 

  17. M. M. Narurkar and A. K. Mitra. Synthesis, physicochemical properties, and cytotoxicity of a series of 5′-ester prodrugs of 5-iodo-2′deoxyuridine. Pharm. Res. 5:734–737 (1988).

    Google Scholar 

  18. M. K. Ghosh and A. K. Mitra. Effects of 5′-ester modification on the physicochemical properties and plasma protein binding of 5-iodo-2′-deoxyuridine. Pharm. Res. 6:771–775 (1991).

    Google Scholar 

  19. A. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.). The Pharmacological Basis of Therapeutics, Macmillan, New York, 1986, pp. 1229–1231.

    Google Scholar 

  20. L. M. Beauchamp, G. F. Orr, P. de Miranda, T. Burnette, and T. A. Krenitsky. Amino acid ester prodrugs of acyclovir. Antiviral Chem. Chemother. 3:157–164 (1992).

    Google Scholar 

  21. G.-B. Park, Z. Shao, and A. K. Mitra. Acyclovir permeation enhancement across intestinal and nasal mucosae by bile salt-acylcarnitine mixed micelles. Pharm. Res. 9:1262–1267 (1992).

    Google Scholar 

  22. M. R. Harnden, P. G. Wyatt, M. R. Boyd, and D. Sutton. Synthesis and antiviral activity of 9-alkoxypurines. 1. 9-(3-Hydroxypropoxy)-and 9-[3-hydroxy-2-(hydroxymethyl)propoxy] purines. J. Med. Chem. 33:187–196 (1990).

    Google Scholar 

  23. S. Hirai, T. Yashiki, T. Matsuzawa, and H. Mima. Absorption of drugs from the nasal mucosa of rat. Int. J. Pharm. 7:317–325 (1981).

    Google Scholar 

  24. G. Land and A. Bye. Simple high-performance liquid chromatographic method for the analysis of 9-(2-hydroxyethoxymethyl) guanine [acyclovir] in human plasma and urine. J. Chromatogr. 224:51–58 (1981).

    Google Scholar 

  25. C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley and Sons, New York, 1979.

    Google Scholar 

  26. B. H. Hofstee. Specificity of esterases. II. Behavior of pancreatic esterases I and II toward a homologous series of n-fatty acid esters. J. Biol. Chem. 199:365–371 (1952).

    Google Scholar 

  27. M. K. Ghosh and A. K. Mitra. Enhanced delivery of 5-iodo-2′-deoxyuridine to the brain parenchyma. Pharm. Res. 9:1173–1176 (1992).

    Google Scholar 

  28. M. A. Sarkar. Drug metabolism in the nasal mucosa. Pharm. Res. 9:1–9 (1992).

    Google Scholar 

  29. W. T. Stott and M. J. McKenna. Hydrolysis of several glycol ether acetates and acrylate esters by nasal mucosal carboxylesterase in vitro. Fund. Appl. Toxicol. 5:399–404 (1985).

    Google Scholar 

  30. Z. Shao and A. K. Mitra. Bile salt-fatty acid mixed micelles as nasal absorption promoters III. Effects on nasal transport and enzymatic degradation of acyclovir prodrugs. Pharm. Res. 11:243–250 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Z., Park, GB., Krishnamoorthy, R. et al. The Physicochemical Properties, Plasma Enzymatic Hydrolysis, and Nasal Absorption of Acyclovir and Its 2′-Ester Prodrugs. Pharm Res 11, 237–242 (1994). https://doi.org/10.1023/A:1018903407592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018903407592

Navigation