Skip to main content
Log in

Influence of an Externally-Applied Static Charge on the Oxidation Kinetics of Copper

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The kinetics of copper oxidation under theinfluence of an externally-supplied static charge ofeither kind at one of the reaction interfaces of agrowing oxide film on its subsequent thickening weredetermined in the temperature range of 523-1173 K andoxygen-pressure range of 5.06-50.66 kPa. The kineticsconformed to the parabolic rate law under all conditionsof experimentation. In the temperature range of 523-723 K, charge supply of either kind ateither of the oxide interfaces, reduced the ratescompared to normal oxidation. The reduction in rates ismore pronounced with (-)ve charge supply. In thistemperature range, Mott's in situ electrical-potentialgradient across the oxide film is identified as thepredominant driving force for migration of copper ionsduring the subsequent film-thickening process. On the other hand, in the temperature range of 873-973K, a charge supply of either kind enhanced the ratescompared to normal oxidation, where Wagner'selectrochemical-potential gradient acts as the maindriving force for ion diffusion. However, at 1073 K and1173 K, the rates were found to decrease slightlycompared to normal oxidation. The oxygen-pressuredependencies of rate constants at 623 K exhibitedrelations of the type kP ∝P 1/4O2 for normal and kp ∝P 1/8O2 (approximately) for oxidation witheither (+)ve or (-)ve charge supply at the oxide/oxygeninterface. However, at 873 K the oxygen-pressuredependencies of rate constants conform to kP ∝P 1/6O2 for normal as well as for oxidationwith either (+)ve or (-)ve charge supply at theoxide/oxygen interface. The estimated activationenergies are 54 kJ/mol and 160 kJ/mol in Mott's and Wagner's parabolic ranges,respectively. It is established that migration of Cu+ions through the growing film is the rate-limiting stepunder all conditions of experimentation. This study has clearly demonstrated that changes inoxidation rates can be brought about by disturbing theinterfacial defect equilibria with anexternally-supplied static charge when no net currentflows through the oxide film. The estimated self-diffusivityvalues of Cu+ ions in the growingCu2O at 873 K are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. K. Bose, V. Ananth, and S. C. Sircar, Proceedings of 10th Int. Congress on Metallic Corrosion, Nov. 7 - 11, Madras, Publ. Oxford and IBH, India (1987), p. 3615.

    Google Scholar 

  2. S. K. Roy, V. Ananth, and S. K. Bose, Oxid. Met. 43, 185 (1995).

    Google Scholar 

  3. V. Ananth, Influence of Impressed Direct Current and Short-circuiting on the Oxidation Behaviour of Copper and Iron and on the Reduction Kinetics of Wüstite at High Temperatures, PhD thesis, I.I.T., Kharagpur, India (1985).

    Google Scholar 

  4. P. K. Krishnamoorthy and S. C. Sircar, Acta Met. 16, 1461 (1968).

    Google Scholar 

  5. S. K. Roy, P. K. Krishnamoorthy, and S. C. Sircar, Acta Met. 18, 519 (1970).

    Google Scholar 

  6. V. Ananth, S. K. Bose, and S. C. Sircar, Scripta Met. 14, 687 (1980).

    Google Scholar 

  7. V. Ananth, S. C. Sircar, and S. K. Bose, Proceedings of Inter. Conf. on Corros. Sci. and Tech. (ICMS-85), Calcutta, S. K. Bose and U. K. Chatterjee, eds., Feb. 21- 23 (1985), p. 320.

  8. S. K. Bose, S. C. Sircar, and S. K. Roy, in Proceedings of Int. Symposium on High Temp. Corrosion and Protection, June 26- 30 (1990), Shenyang, China, G. Hengrong, Wu Weito, S. Jianian, and Li Tiefan, eds. (Liaoning Science and Technology Publishing House, 1991), p. 29.

  9. S. K. Roy, S. K. Bose, and S. C. Sircar, Oxid. Met. 35, 1 (1991).

    Google Scholar 

  10. V. Ananth, S. C. Sircar, and S. K. Bose, Trans. JIM 26, 123 (1985).

    Google Scholar 

  11. R. N. Patnaik, S. K. Bose, and S. C. Sircar, Br. Corros. J. 12, 57 (1977).

    Google Scholar 

  12. S. K. Bose, S. K. Mitra, and S. K. Roy, Oxid. Met. 46, 99 (1996).

    Google Scholar 

  13. S. K. Mitra, Influence of Short-circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu- Li and Cu- Cr Systems in the Temperature Range of 523-1173K. PhD thesis, I.I.T., Kharagpur, India (1991).

    Google Scholar 

  14. N. L. Peterson and C. L. Wiley, J. Phys. Chem. Solids 45, 281 (1984).

    Google Scholar 

  15. J. Xue and R. Dieckmann, J. Phys. Chem. Solids 51, 1263 (1990).

    Google Scholar 

  16. S. K. Mitra, P. K. Bhattacharyya, A. Sarkar, S. K. Bose, and S. C. Sircar, J. Mater. Sci. 25, 1318 (1990).

    Google Scholar 

  17. A. T. Fromhold, J. Phys. Chem. Solids 33, 95 (1972).

    Google Scholar 

  18. A. T. Fromhold, Theory of Metal Oxidation, Vol. I: Fundamental (1976); Vol. II: Space Charge (1980) (North Holland Publ. Co., Amsterdam, New York, Oxford).

    Google Scholar 

  19. N. Cabrera and N. F. Mott, Rep. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  20. C. Wagner, Z. Phyk. Chem. 21B, 25 (1933); 32B, 447 (1936).

    Google Scholar 

  21. C. Wagner, Atom Movements (ASM, Cleveland, Ohio, 1951), p. 151.

    Google Scholar 

  22. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th Ed. (Pergamon Press, Oxford, 1989).

    Google Scholar 

  23. J. Bardeen, W. H. Brattain, and W. Schockley, J. Chem. Phys. 14, 714 (1946).

    Google Scholar 

  24. F. A. Kröger, The Chemistry of Imperfect Crystals, Vol. 3, 2nd rev. Ed. (North Holland Publ. Co., Oxford, 1974), p. 103.

  25. J. A. Leroux and E. Raub, Z. Anorg. u. Allgen. Chem. 188, 205 (1930).

    Google Scholar 

  26. N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529 (1923).

    Google Scholar 

  27. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1967), p. 22.

    Google Scholar 

  28. K. Hauffe, Oxidation of Metals (Plenum Press, New York, 1965), p. 159.

    Google Scholar 

  29. P. Kofstad, High Temperature Oxidation of Metals (John Wiley and Sons, New York and London, 1966), p. 123; High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), pp. 186, 202.

    Google Scholar 

  30. C. Wagner and K. Grunewald, Z. Physik Chem. B40, 455 (1938).

    Google Scholar 

  31. F. P. Fehlner and N. F. Mott, in Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, 1971), p. 37.

    Google Scholar 

  32. J. Bloem, Philips. Res. Rep. 13, 167 (1958).

    Google Scholar 

  33. R. S. Toth, R. Kilkson, and D. Trivich, Phys. Rev. 122, 482 (1961).

    Google Scholar 

  34. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover Publ. New York, 1964), p. 178.

    Google Scholar 

  35. S. K. Roy, Kinetics of Oxidation of Copper and Its Alloys at Low and Intermediate Temperatures, PhD thesis, I.I.T., Kharagpur, India (1976).

    Google Scholar 

  36. K. Fueki and J. B. Wagner, J. Electrochem. Soc. 112, 384 (1965).

    Google Scholar 

  37. F. S. Pettit, J. Electrochem. Soc. 113, 1250 (1966).

    Google Scholar 

  38. S. Mrowec and A. Stoklosa, Oxid. Met. 3, 291 (1971).

    Google Scholar 

  39. S. Mrowec, A. Stoklosa, and K. Godlewski, Cryst. Latt. Def. 5, 239 (1974).

    Google Scholar 

  40. S. Mrowec, Defects and Diffusion in Solids - An Introduction (Elsevier, 1980), pp. 191, 378.

  41. W. J. Tomlinson and J. Yates, J. Phys. Chem. Solids 38, 1205 (1977).

    Google Scholar 

  42. W. Jost, Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1952), p. 352.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S.K., Mitra, S.K. & Bose, S.K. Influence of an Externally-Applied Static Charge on the Oxidation Kinetics of Copper. Oxidation of Metals 49, 261–295 (1998). https://doi.org/10.1023/A:1018882408550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018882408550

Navigation