Skip to main content
Log in

Radiolabeled Cholesteryl lopanoate/ Acetylated Low Density Lipoprotein as a Potential Probe for Visualization of Early Atherosclerotic Lesions in Rabbits

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Atherosclerosis is the underlying factor leading to such cardiovascular diseases (CVD) as stroke, aneurysm, and myocardial infarction. The early detection of atherosclerotic plaques is considered to be crucial for successful prevention and/or therapeutic and dietary intervention of CVD. Current diagnostic practice, on the other hand, can only detect the problem at an advanced stage. The purpose of this study was to examine the potential of using a radiolabeled cholesterol ester analog/acetylated low density lipoprotein (AcLDL) conjugate as a diagnostic agent for the early and non-invasive detection of atherosclerosis and for the monitoring of the effects of drug therapy.

Methods. Cholesteryl iopanoate (CI), a cholesterylester analog, was synthesized, radiolabeled, and incorporated into AcLDL. Early atherosclerotic lesions were induced in New Zealand White rabbits. 125I-C1/ AcLDL was injected intravenously at 2 μCi/kg. Blood samples were taken at different time intervals after injection and clearance of the injected drug from blood was studied. The rabbits were sacrificed after 72 hours and the distribution of radioactivity in various organs was investigated. Aortae of both atherosclerotic lesion and control rabbits were removed for Sudan IV staining and autoradiography in order to confirm the formation of the atherosclerotic lesion and localization of radioactivity.

Results. The injected drug was found to be cleared from blood following a two compartment model. Radioactivity in the atherosclerotic aorta was found to be about 8 times higher than that in normal aorta, suggesting that the proposed diagnostic probe was selectively taken up by the atherosclerotic lesion. The autoradiography and staining confirmed that the localization of the proposed probe was superimposed with the atherosclerotic lesion site.

Conclusions. The results suggested that incorporation of CI into AcLDL resulted in the selective localization of CI at the atherosclerotic plaque areas. CI/AcLDL labeled with appropriate radioisotope has the potential to be used as a probe for visualization of early atherosclerotic lesion using scintigraphy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. J. Schwartz, A. J. Valente, E. A. Sprague, J. L. Kelley, and R. M. Nerem. The pathogenesis of atherosclerosis, an overview. Clin. Cardiol. 14:I-1-I-16 (1991).

    Google Scholar 

  2. E. N. Arnett, M. Isner, D. R. Redwood, K. M. Kent, W. P. Daker, H. Ackerstien, and W. C. Roberts. Coronary artery narrowing in coronary heart disease: Comparison of cineangiographic and necropsy findings. Ann. Int. Med. 91:350-356 (1979).

    Google Scholar 

  3. Z. Vlodaver, R. Frech, R. A. Van Tassel, and J. E. Edwards. Correlation of the antimortem coronary arteriogram and the postmortem specimen. Circulation 47:162-169 (1973).

    Google Scholar 

  4. R. G. Gerrity. The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103:181-190 (1981).

    Google Scholar 

  5. L. M. Buja, T. Kita, J. L. Goldstein, Y. Watanabe and M. S. Brown. Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 3:87-101 (1983)

    Google Scholar 

  6. J. L. Goldstein, Y. K. Ho, S. K. Basu and M. S. Brown. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA. 76:333-337 (1979).

    Google Scholar 

  7. S. Yla-Herttuala, M. E. Rosenfeld, S. Parthasarathy, E. Sigal, T. Sarkioja, J. L. Witztum, and D. Steinberg. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J. Clin. Invest. 87:1146-1152 (1991).

    Google Scholar 

  8. M. A. Longino, J. P. Weichert, S. W. Schwendner, S. M. Szabo, R. E. Counsell, and G. M. Glazer. Biodistribution of a new lipid-soluble CT contrast agent. Evaluation of cholesteryl iopanoate in the rabbit. Invest. Radiol. 18:275-278 (1983).

    Google Scholar 

  9. V. N. Schumaker and D. L. Puppione. Sequential flotation ultracentrifugation. Methods in Enzymology 128:155-171 (1986).

    Google Scholar 

  10. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248 (1976).

    Google Scholar 

  11. S. K. Basu, J. L. Goldstein, R. G. W. Anderson, and M. S. Brown. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemic fibroblasts. Proc. Natl. Acad. Sci. USA 73:3178-3182 (1976).

    Google Scholar 

  12. R. H. Seevers, M. P. Groziak, J. P. Weichert, S. W. Schwendner, S. M. Szabo, M. A. Longino, and R. E. Counsell. Potential tumor-or organ-imaging agents. 23 Sterol esters of iopanoic acid. J. Med. Chem. 25:1500-1503 (1982).

    Google Scholar 

  13. J. P. Weichert, M. A. Longino, D. A. Bakan, M. G. Spigarelli, T-S Chou, S. W. Schwendner, and R. E. Counsell. Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver. J. Med. Chem. 38:636-646 (1995).

    Google Scholar 

  14. M. R. DeGalan, S. W. Schwendner, R. W. S. Skinner, M. A. Longino, M. Gross, and R. E. Counsell. Iodine-125 cholesteryl iopanoate for measuring extent of atherosclerosis in rabbits. J. Nucl. Med. 29:503-508 (1988).

    Google Scholar 

  15. A. D. Cardin, C. A. Price, N. Hirose, M. A. Krivanek, D. T. Blankenship, J. Chao, and S. J. T. Mao. Structural organization of apolipoprotein B-100 of human plasma low density lipoproteins. Comparison to B-48 of chylomicrons and very low density lipoproteins. J. Biol. Chem. 261:16,744-16,748 (1986).

    Google Scholar 

  16. M. Samadi-Baboli, G. Favre, P. Canal, and G. Soula. Low density lipoprotein for cytotoxic drug targeting: improved activity of elliptinium derivative against B16 melanoma in mice. Br. J. Cancer 68:319-326 (1993).

    Google Scholar 

  17. H. Sinzinger, H. Bergmann, J. Kaliman, and P. Angelberger. Imaging of human atherosclerotic lesions using 123I-low density lipoprotein. Eur. J. Nucl. Med. 12:291-292 (1986).

    Google Scholar 

  18. H. Sinzinger and P. Angelberger. Imaging and kinetic studies with radiolabeled autologous low-density-lipoproteins (LDL) in human atherosclerosis. Nucl. Med. Comm. 9:859-866 (1988).

    Google Scholar 

  19. A. B. Roberts, A. M. Lees, R. S. Lees, H. W. Strauss, J. T. Fallon, J. Taveras, and S. Kopiwoda. Selective accumulation of low density lipoproteins in damaged arterial wall. J. Lipid Res. 24:1160-1167 (1983).

    Google Scholar 

  20. J. M. Rosen, S. P. Butler, G. E. Meinken, T. S. T. Wang, R. Ramakrishan, S. C. Srivastava, P. O. Alderson, and H. N. Ginsberg. Indium-111 labeled LDL: A potential agent for imaging atherosclerotic disease and lipoprotein distribution. J. Nucl. Med. 31:343-350 (1990).

    Google Scholar 

  21. J. M. Nicolas, B. Leclef, H. Jardez, A. Keyeux, J. A. Melin, and A. Trouet. Imaging atherosclerotic lesions with 111In-labeled low density lipoprotein. (abstract) Vienna. Proceedings of the International Atherosclerosis Congress. p A219 (1989).

  22. R. S. Lees, H. D. Garabedian, A. M. Lees, D. J. Schumacher, A. Miller, J. L. Isaacsohn, A. Derksen, and H. W. Strauss. Technetium-99m low density lipoprotein: Preparation and biodistribution. J. Nucl. Med. 26:1056-1062 (1985).

    Google Scholar 

  23. A. M. Lees, R. S. Lees, F. J. Schoen, J. L. Issacsohn, A. J. Fischman, K. A. McKusick, and H. W. Strauss. Imaging human atherosclerosis with99mTc-labeled low density lipoprotein. Atherosclerosis 8:461-470 (1988).

    Google Scholar 

  24. D. E. Atsma, R. I. J. Feitsma, J. Camps, F. M. van't Hooft, E. E. van der Wall, W. Nieuwenhuizen, and E. K. J. Pauwels. Potential of99mTc-LDLs labeled by two different methods for scintigraphic detection of experimental atherosclerosis in rabbits. Arteriosclerosis Thrombosis 13:78-83 (1993).

    Google Scholar 

  25. I. Kenji, K. Toru, K. Noriaki, N. Yutaka, and K. Chuichi. Uptake of acetylated LDL by peritoneal macrophages obtained from normal and Watanabe heritable hyperlipidemic rabbits, an animal model for familial hypercholesterolemia. Biochim. Biophys. Acta. 962:387-389 (1988).

    Google Scholar 

  26. M. S. Brown and J. L. Goldstein. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Review Biochem. 52:223-261 (1983).

    Google Scholar 

  27. J. Narula, A. Petrov, K. Y. Pak, C. Ditlow, F. Chen, and B. A. Khaw. Noninvasive detection of atherosclerotic lesions by99mTc-based immunoscintigraphic targeting of proliferating smooth muscle cells. Chest 111:1684-1690 (1997).

    Google Scholar 

  28. B. A. Allison, M. T. Crespo, A. K. Jain, A. M. Richter, Y. N. Hsiang, and J. G. Levy. Delivery of benzoporphyrin derivative, a photosensitizer, into atherosclerotic plaque of Watanabe heritable hyperlipidemic rabbits and balloon-injured New Zealand rabbits. Photochem. Photobiol. 65:877-883 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Wang, L., Scott, T. et al. Radiolabeled Cholesteryl lopanoate/ Acetylated Low Density Lipoprotein as a Potential Probe for Visualization of Early Atherosclerotic Lesions in Rabbits. Pharm Res 16, 420–426 (1999). https://doi.org/10.1023/A:1018881904228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018881904228

Navigation