Skip to main content
Log in

Factors Affecting Chromium Carbide Precipitate Dissolution During Alloy Oxidation

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ferrous alloys containing significant volumefractions of chromium carbides were formulated so as tocontain an overall chromium level of 15% (by weight) buta nominal metal matrix chromium concentration of only 11%. Their oxidation at 850°C inpure oxygen led to either protectiveCr2O3 scale formation accompaniedby subsurface carbide dissolution or rapid growth ofiron-rich oxide scales associated with rapid alloy surface recession, which engulfedthe carbides before they could dissolve. Carbide sizewas important in austenitic alloys: an as-castFe-15Cr-0.5C alloy contained relatively coarse carbides and failed to form aCr2O3 scale, whereas the samealloy when hot-forged to produce very fine carbidesoxidized protectively. In ferritic alloys, however, evencoarse carbides dissolved sufficiently rapidly to provide the chromium flux necessary to formand maintain the growth of a Cr2O3scale, a result attributed to the high diffusivity ofthe ferrite phase. Small additions of silicon to theas-cast Fe-15Cr-0.5C alloy rendered it ferritic and led toprotective Cr2O3 growth. However,when the silicon-containing alloy was made austenitic(by the addition of nickel), it still formed aprotective Cr2O3 scale, showing that the principal function of silicon was inmodifying the scale-alloy interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. C. Wood, I. G. Wright, T. Hodgkiess, and D. P. Whittle, Werkst. Korros. 21, 900 (1970).

    Google Scholar 

  2. I. G. Wright, Oxidation of Iron-, Nickel-, and Cobalt-base Alloys, MCIC Report, MCIC 72-07, (Metals and Ceramics Information Centre, 1972).

  3. G. Wallwork, Rept. Progr. Phys. 39, 401 (1976).

    Google Scholar 

  4. F. Gesmundo and B. Gleeson, Oxid. Met. 44, 211 (1995).

    Google Scholar 

  5. G. Wang, B. Gleeson, and D. L. Douglass, Oxid. Met. 35, 333 (1991).

    Google Scholar 

  6. F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood, Werkst. Korros. 38, 521 (1987).

    Google Scholar 

  7. A. Kumar and D. L. Douglass, Oxid. Met. 10, 1 (1976).

    Google Scholar 

  8. A. W. Bowen and G. M. Leak, Met. Trans. 1, 2767 (1970).

    Google Scholar 

  9. C. J. Smithells, Metals Reference Book (Butterworths, London, 1967), Vol. II, p. 664.

    Google Scholar 

  10. A. F. Smith and G. B. Gibbs, Met. Sci. J. 3, 93 (1969).

    Google Scholar 

  11. G. C. Wood, J. A. Richardson, M. G. Hobby, and J. Boustead, Corros. Sci. 9, 659 (1969).

    Google Scholar 

  12. J. W. Evans and S. K. Chatterji, J. Electrochem. Soc. 106, 860 (1959).

    Google Scholar 

  13. I. Svedung and N. G. Vannerberg, J. Less-Common Met. 14, 391 (1975).

    Google Scholar 

  14. M. J. Bennett, J. A. Desport, and P. A. Labun, Oxid. Met. 22, 291 (1984).

    Google Scholar 

  15. M. J. Bennett, G. W. Horsley, and M. R. Houlton, Proc. Fundamental Aspects of Corrosion Protection by Surface Modification (The Electrochemical Society, Pennington, NJ, 1984), p. 282.

    Google Scholar 

  16. M. J. Bennett, J. A. Desport, and P. A. Labun, Oxid. Met. 22, 291 (1984).

    Google Scholar 

  17. S. J. Allan and M. J. Dean, Proc. Behavior of High Temperature Alloys in Aggressive Environments (The Metals Society, Warrendale, PA, 1980), p. 319.

    Google Scholar 

  18. C. S. Giggins and F. S. Pettit, Trans. Met. Soc. AIME 245, 2495 (1969).

    Google Scholar 

  19. C. S. Giggins and F. S. Pettit, Trans. Met. Soc. AIME 245, 2509 (1969).

    Google Scholar 

  20. B. Sundman, B. Jansson, and J. O. Andersson, CALPHAD 9, 153 (1985).

    Google Scholar 

  21. G. M. Orlova and V. V. Ipatyev, J. App. Chem. USSR, 29, 889 (1956).

    Google Scholar 

  22. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxid. Met. 19, 1 (1983).

    Google Scholar 

  23. M. King, (ed.), Powder Diffraction Files, Inorganic Phases (Sets 1-43) (International Centre for Diffraction Data, Newtown Square, Pennsylvania, 1993).

    Google Scholar 

  24. I. Wolf and H. J. Grabke, Solid State Commun. 54, 5 (1985).

    Google Scholar 

  25. I. Wolf, H. J. Grabke, and P. Schmidt, Oxid. Met. 29, 289 (1988).

    Google Scholar 

  26. X.G. Zheng and D. J. Young, Oxid. Met. 42, 163 (1994).

    Google Scholar 

  27. M. J. Bennett, G. W. Horsley, and M. R. Houlton, Proc. Fundamental Aspects of Corrosion Protection by Surface Modifi cation (The Electrochemical Society, Pennington, NJ, 1984), p. 282.

    Google Scholar 

  28. M. J. Bennett, J. A. Desport, and P. A. Labun, Oxid. Met. 22, 291 (1984).

    Google Scholar 

  29. G. R. Johnston, High Temp. High Press. 14, 695 (1982).

    Google Scholar 

  30. P. Carter, B. Gleeson, and D. J. Young, Acta Metall. 44, 4033 (1996).

    Google Scholar 

  31. L. C. Brown and J. S. Kirkaldy (1964), Trans. Met. Soc. AIME 230, 223 (1964).

    Google Scholar 

  32. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metall. 15, 1747 (1967).

    Google Scholar 

  33. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxid. Met. 12, 413 (1978).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durham, R.N., Gleeson, B. & Young, D.J. Factors Affecting Chromium Carbide Precipitate Dissolution During Alloy Oxidation. Oxidation of Metals 50, 139–165 (1998). https://doi.org/10.1023/A:1018880019395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018880019395

Navigation