Foundations of Physics

, Volume 29, Issue 11, pp 1785–1805 | Cite as

Gauge Transformations for a Driven Quantum Particle in an Infinite Square Well

  • Stefan Weigert


Quantum mechanics of a particle in an infinite square well under the influence of a time-dependent electric field is reconsidered. In some gauge, the Hamiltonian depends linearly on the momentum operator, which is symmetric but not self-adjoint when defined on a finite interval. In spite of this symmetric part, the Hamiltonian operator is shown to be self-adjoint. This follows from a theorem by Kato and Rellich which guarantees the stability of a self-adjoint operator under certain symmetric perturbations. The result, which has been assumed tacitly by other authors, is important in order to establish the equivalence of different Hamiltonian operators related to each other by quantum gauge transformations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Lin and L. E. Reich, Physica D 19, 145 (1986).Google Scholar
  2. 2.
    E. Eisenberg, R. Avigur, and N. Shnerb, Found. Phys. 27, 135 (1997).Google Scholar
  3. 3.
    A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1992).Google Scholar
  4. 4.
    S. Grossmann, Funktionalanalysis I, II (Akademische Verlagsgesellschaft, Frankfurt, 1970).Google Scholar
  5. 5.
    M. Reed and B. Simon, Methods of Modern Mathematics. Vols. I and II (Academic, New York, 1972).Google Scholar
  6. 6.
    O. E. Alon, N. Moiseyev, and A. Peres, J. Phys. A 28, 1765 (1995).Google Scholar
  7. 7.
    J. Weidmann, Lineare Operatoren in Hilberträumen (Teubner, Stuttgart, 1976).Google Scholar
  8. 8.
    D. Stoler, Phys. Rev. D 1, 3217 (1970).Google Scholar
  9. 9.
    J. S. Howland, Lecture Notes in Physics, Vol. 130 (Springer, Wien, 1982), p. 163.Google Scholar
  10. 10.
    G. Casati and J. Molinari, Prog. Theor. Phys. Suppl. 98 (1989).Google Scholar
  11. 11.
    G. Morandi, The Rôle of Topology in Classical and Quantum Physics, Lecture Notes in Physics (Springer, Berlin, 1992).Google Scholar
  12. 12.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1995).Google Scholar
  13. 13.
    B.-G. Englert, Found. Phys. 28, 375 (1998).Google Scholar
  14. 14.
    R. M. Wilcox, J. Math. Phys. 8, 4 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Stefan Weigert

There are no affiliations available

Personalised recommendations