Skip to main content
Log in

The Long-Term, Cyclic-Oxidation Behavior of Selected Chromia-Forming Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Long-term, cyclic-oxidation testing in still airfor about 2 years (720 days) at 982°C and 1 year(360 days) at 1093, 1149, and 1204°C has beenconducted on the commercial, high-temperaturechromia-forming HR-120®, HR160®, and 230® alloys(all trademarks of Haynes International, Inc.). Eachthermal cycle consisted of 30 days at temperaturefollowed by about 4 hr at ambient. The resultsdemonstrated the significant effects of alloy composition on long-term,cyclic-oxidation resistance. Each of the alloysexhibited scale spallation; however, the manner by whichspallation occurred varied between the alloys. The 230 alloy, which contains 0.02 wt.% La, exhibitedpartial scale spallation, thus allowing for the easierformation of a protective or semiprotectiveCr2O3-rich scale during subsequentoxidation. The HR-160 alloy exhibited complete spallation owinglargely to its relatively high silicon content (2.75wt.%). However, the silicon was also beneficial inpromoting protective or semiprotective scale formationwhen the exposed alloy was subsequently oxidized.The HR-120 alloy showed the poorest cyclic-oxidationresistance, due in part to poor scale adhesion and thetendency of the iron in this alloy (33 wt.%) toeventually oxidize and result in the formation of aless-protective scale. All of the alloys underwentinternal attack in the form of internal oxidation andvoid formation. In most cases, the extent of internalattack was significantly greater than that of metalloss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  2. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxid. Met. 12, 413 (1978).

    Google Scholar 

  3. J. Nesbitt, J. Electrochem. Soc. 136, 1511 (1989).

    Google Scholar 

  4. G. C. Wood and F. H. Stott, Mater. Sci. Technol. 3, 519 (1987).

    Google Scholar 

  5. G. C. Wood and D. P. Whittle, Corros. Sci. 7, 763 (1967).

    Google Scholar 

  6. M. Schütze, Oxid. Met. 44, 29 (1995).

    Google Scholar 

  7. D. P. Whittle, Oxid. Met. 4, 171 (1972).

    Google Scholar 

  8. G. Wahl, Thin Solid Films 107, 417 (1983).

    Google Scholar 

  9. J. A. Nesbitt, J. Electrochem. Soc. 136, 1518 (1989).

    Google Scholar 

  10. C. E. Lowell, J. L. Smialek, and C. A. Barrett, in High Temperature Corrosion, R. A. Rapp, ed. (National Association of Corrosion Engineers, Houston, TX, 1983), p. 219.

    Google Scholar 

  11. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst, Oxid. Met. 36, 81 (1991).

    Google Scholar 

  12. M. A. Harper, J. E. Barnes, and G. Y. Lai, Corrosion/ 97 (National Association of Corrosion Engineers, Houston, TX, 1997), Paper 97132.

    Google Scholar 

  13. D. L. Douglass and J. S. Armijo, Oxid. Met. 3, 185 (1971).

    Google Scholar 

  14. C. L. Angerman, Oxid. Met. 5, 149 (1972).

    Google Scholar 

  15. C. A. Barrett, A Statistical Analysis of Elevated Temperature Gravimetric Cyclic Oxidation Data of 36 Ni-and Co-base Superalloys Based on an Oxidation Attack Parameter (NASA, NASA Lewis Research Center, December 1992), TM-105934.

  16. R. C. Lobb, J. A. Sasse, and H. E. Evans, Mater. Sci. Technol. 5, 828 (1989).

    Google Scholar 

  17. D. P. Whittle and J. Stringer, Phil. Trans. Roy. Soc. 295A, 309 (1980).

    Google Scholar 

  18. S. Mrowec, J. Jedlinski, and A. Gil, Mater. Sci. Eng. A120, 169 (1989).

    Google Scholar 

  19. K. S. Chan, Metall. Mater. Trans. A 28A, 411 (1997).

    Google Scholar 

  20. H. E. Evans, Int. Mater. Rev. 40, 1 (1995).

    Google Scholar 

  21. C.-O. Moon and S.-B. Lee, Oxid. Met. 39, 1 (1993).

    Google Scholar 

  22. C. A. Barrett and C. E. Lowell, Oxid. Met. 9, 307 (1975).

    Google Scholar 

  23. S. K. Rhee and A. R. Spencer, Metall. Trans. 1, 2021 (1970).

    Google Scholar 

  24. S. F. Frederick and I. Cornet, J. Electrochem. Soc. 102, 285 (1955).

    Google Scholar 

  25. C. H. Lund and H. J. Wagner, Oxidation of Nickel-and Cobalt-Base Superalloys, Defence Metals Information Center (DMIC) Report 214, Batelle Memorial Institute (1965).

  26. C. S. Tedmon, J. Electrochem. Soc. 113, 766 (1966).

    Google Scholar 

  27. B. Lustman, Trans. AIME 188, 995 (1950).

    Google Scholar 

  28. A. Preece and G. Lucas, J. Inst. Met. 81, 219 (1952-53).

    Google Scholar 

  29. J. Robertson and M. I. Manning, Mater. Sci. Technol. 5, 741 (1989).

    Google Scholar 

  30. F. H. Stott and F. I. Wei, Oxid. Met. 31, 369 (1989).

    Google Scholar 

  31. A. Davin, D. Coutsouradis, and L. Habraken, Cobalt 35, 69 (1967).

    Google Scholar 

  32. R. C. John, Corrosion / 96 (National Association of Corrosion Engineers, Houston, TX, 1996), Paper 171.

    Google Scholar 

  33. A. H. Rosenstein, J. K. Tien, and W. D. Nix, Metall. Trans. A 17A, 151 (1986).

    Google Scholar 

  34. R. H. Bricknell and D. A. Woodford, Acta Metall. 30, 257 (1982).

    Google Scholar 

  35. D. Gan, Metall. Trans. A 14A, 1518 (1983).

    Google Scholar 

  36. A. Smigelskas and E. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  37. R. H. Bricknell, R. A. Mulford, and D. A. Woodford, Met. Trans. A 13A, 1223 (1982).

    Google Scholar 

  38. C. Wagner, Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  39. R. A. Rapp, Corrosion 21, 382 (1965).

    Google Scholar 

  40. J. A. Nesbitt and R. W. Heckel, Met. Trans. A 18A, 2075 (1987).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, B., Harper, M.A. The Long-Term, Cyclic-Oxidation Behavior of Selected Chromia-Forming Alloys. Oxidation of Metals 49, 373–399 (1998). https://doi.org/10.1023/A:1018874206733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018874206733

Navigation