Skip to main content
Log in

Improved Oxide Spallation Resistance of Microcrystalline Ni-Cr-Al Coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Microcrystalline Ni-20Cr-3Al coatings weredeposited on Ni-20Cr-3Al substrates by unbalancedmagnetron-sputter deposition. The grain size of thecoatings was varied by using different Ar pressures.Cyclic-oxidation testing was performed at 1100°C. It wasfound that (1) an externalα-Al2O3 scale formed oncoating A (4.7 μm thick, 50 nm grain size); (2) anexternal Cr2O3 scale and internalAl2O3 oxide formed on coating B (14 μm thick, 500 nm grain size);and (3) an outer layer scale ofCr2O3 +NiCr2O4 and interior layer ofAl2O3 formed on the as-cast alloy.Extensive spallation of the Cr2O3+ NiCr2O4 scale took place on the as-cast alloy, but no obviousspallation occurred on the two coatings. Improvement ofthe spallation resistance of the scale is explained byeffective diffusional creep of the coatings and the micropegging effect of the inward-grownoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Nicholls and P. Hancock, Ind. Corros. 8 (1987).

  2. J. R. Nicholls, P. Hancock, and L. H. Yasiri, J. Mater. Sci. Technol. 5, 799 (1989).

    Google Scholar 

  3. B. Windows, Surface Coatings Technol. 71, 93 (1995).

    Google Scholar 

  4. H. Lou, F. Wang, S. Zhu, B. Xia, and L. Zhang, Surface Coatings Technol. 63, 105 (1994).

    Google Scholar 

  5. F. Wang, H. Lou, and W. Wu, Vacuum 43, 749 (1992).

    Google Scholar 

  6. Z. Liu, W. Gao, K. Dahm, and F. Wang, Scripta Mater., 37, 1551 (1997).

    Google Scholar 

  7. Z. Liu, W. Gao, K. Dahm, and F. Wang, Acta Mater., 46, 1691 (1998).

    Google Scholar 

  8. J. J. Barnes, J. G. Goedjen, and D. A. Shores, Oxid. Met. 32, 449 (1989).

    Google Scholar 

  9. Z. Liu, W. Gao, K. Dahm, and Y. He, High Temperature Materials and Performance 16, 159 (1997).

    Google Scholar 

  10. P. Kofstad, Oxid. Met. 24, 265 (1985).

    Google Scholar 

  11. A. Atkinson, Rev. Modern Phys. 57, 437 (1985).

    Google Scholar 

  12. A. Atkinson and D. W. Smart, J. Electrochem. Soc. 135, 2886 (1988).

    Google Scholar 

  13. H. E. Evans, Int. Mater. Rev. 40, 1 (1995).

    Google Scholar 

  14. J. V. Cathcart and C. T. Liu, Oxid. Met. 6, 123 (1973).

    Google Scholar 

  15. J. K. Tien and F. S. Pettit, Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  16. M. Mastern, D. Cebon, and M. Ashby et al., Cambridge Materials Selector (Granta Design Ltd., 1994), Vol. 2.2.

  17. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

  18. P. Shahinian and M. R. Achter, Trans. ASM 51, 244 (1959).

    Google Scholar 

  19. K. L. Chopra and I. Kaur, Thin Film Device Applications (Plenum Press, New York, 1983).

    Google Scholar 

  20. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology (Noyes Publications, New Jersey, 1989), pp. 338-465.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Gao, W., Dahm, K.L. et al. Improved Oxide Spallation Resistance of Microcrystalline Ni-Cr-Al Coatings. Oxidation of Metals 50, 51–69 (1998). https://doi.org/10.1023/A:1018871817578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018871817578

Navigation