Digestive Diseases and Sciences

, Volume 43, Issue 9, pp 2080–2085 | Cite as

Sulfur Metabolism in Ulcerative Colitis (Investigation of Detoxification Enzymes in Peripheral Blood)

  • Maxton C. L. Pitcher
  • Emily R. Beatty
  • Robert M. Harris
  • Rosemary H. Waring
  • John H. Cummings


Two enzymes of detoxification were studied inblood samples from 27 patients with ulcerative colitis(UC) and 18 controls to determine whether there is anabnormality in sulfur metabolism in UC. Thiolmethyltransferase (TMT) activity was measured in erythrocytemembranes as the extent of conversion of2-mercaptoethanol to S-methyl-2-mercaptoethanol with[3H]methyl-S-adenosyl methionine as methyldonor. Phenol sulfotransferase (PST) activity was measured in platelethomogenates as the extent of sulfation of p -nitrophenolwith 3-phosphoadenosine 5-phospho[35S]sulfate(PAPS) as sulfate donor. TMT activity was significantlyhigher in UC patients (27.0 vs 17.1 nmol/mgprotein/hr; P < 0.005). No difference in PST activitywas found. We conclude that TMT may be up-regulated inUC to detoxify excess hydrogen sulfide exposed to the peripheral blood compartment. This may arisefrom either increased luminal sulfide production orreduced colonic detoxification.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ohkusa T, Yamada M, Takenaga T, Kitazuma C, Yamamoto M, Sasabe M: Protective effect of metronidazole in experimental ulcerative colitis induced by dextran sulfate sodium. Jpn J Gastroenterol 84:2337-2346, 1987Google Scholar
  2. 2.
    Onderdonk AB, Hermos JA, Dzink JL, Bartlett JG: Protective effect of metronidazole in experimental ulcerative colitis. Gastroenterology 74:521-526, 1978PubMedGoogle Scholar
  3. 3.
    Onderdonk AB, Bartlett JG: Bacteriological studies of experimental ulcerative colitis. Am J Clin Nutr 32:258-265, 1979PubMedGoogle Scholar
  4. 4.
    Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I: Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253-261, 1993PubMedGoogle Scholar
  5. 5.
    Sartor RB: Microbial factors in chronic intestinal inflammation. Curr Opin Gastroenterol 12:327-333, 1996Google Scholar
  6. 6.
    Cummings JH, Pomare EW, Branch WJ, Naylor CPE, Macfarlane GT: Short chain fatty acids in the human large intestine, portal, hepatic, and venous blood. Gut 28:1221-1227, 1987PubMedGoogle Scholar
  7. 7.
    Roediger WEW: Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793-798, 1980PubMedGoogle Scholar
  8. 8.
    Roediger WEW: Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424-429, 1982PubMedGoogle Scholar
  9. 9.
    Frankel WL, Zhang W, Singh A, Klurfeld DM, Don S, Sakata T: Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology 106:375-380, 1994PubMedGoogle Scholar
  10. 10.
    Roediger WEW: The colonic epithelium in ulcerative colitis: An energy deficient disease? Lancet 2:712-715, 1980PubMedGoogle Scholar
  11. 11.
    Chapman MAS, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS: Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut 35:73- 76, 1994PubMedGoogle Scholar
  12. 12.
    Den Hond E, Hiele M, Ghoos Y, Rutgeerts P: In vivocolonic butyrate metabolism in extensive ulcerative colitis. Gastroenterology 110:A893, 1996Google Scholar
  13. 13.
    Finnie IA, Taylor BA, Rhodes JM: Ileal and colonic epithelial cell metabolism in ulcerative colitis: Increased glutamine metabolism in distal colon but no defect in butyrate metabolism. Gut 34:1552-1558, 1993PubMedGoogle Scholar
  14. 14.
    Clausen MR, Mortensen PB: Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut 37:684-689, 1995PubMedGoogle Scholar
  15. 15.
    Allan ES, Winter S, Light AM, Allan A: Mucosal enzyme activity for butyrate oxidation: No defect in patients with ulcerative colitis. Gut 38:886-893, 1996PubMedGoogle Scholar
  16. 16.
    Simpson EJ, Chapman MAS, Dawson J, Berry D, Cole AT: In vivometabolism of colonically administered butyrate in quiescent human ulcerative colitis. Gut 42:A42, 1998Google Scholar
  17. 17.
    Roediger WEW, Duncan A, Kapaniris O, Millard S: Reducing sulfur compounds of the colon impair colonocyte nutrition: Implications for ulcerative colitis. Gastroenterology 104:802- 809, 1993PubMedGoogle Scholar
  18. 18.
    Roediger WEW, Duncan A, Kapaniris O, Millard S: Sulphide impairment of substrate oxidation in rat colonocytes: A biochemical basis for ulcerative colitis? Clin Sci 85:1-5, 1993PubMedGoogle Scholar
  19. 19.
    Christl SU, Eisner HD, Kasper H, Scheppach W, Kasper H: Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa—a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci 41:2477-2481, 1996PubMedGoogle Scholar
  20. 20.
    Macfarlane GT, Gibson GR, Cummings JH: Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57-64, 1992PubMedGoogle Scholar
  21. 21.
    Gibson GR, Cummings JH, Macfarlane GT: Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 86:103-112, 1991Google Scholar
  22. 22.
    Florin THJ, Gibson GR, Neale G, Cummings JH: A role for sulphate reducing bacteria in ulcerative colitis? Gastroenterology 98:A170, 1990Google Scholar
  23. 23.
    Pitcher MCL, Beatty ER, Cummings JH: 5-Aminosalicylic acid (5-ASA) inhibits luminal sulfide production by gut bacteria in ulcerative colitis. Gastroenterology 110:A992, 1996Google Scholar
  24. 24.
    Bremer J, Greenberg DM: Enzymatic methylation of foreign sulphydryl compounds. Biochim Biophys Acta 46:217-224, 1961Google Scholar
  25. 25.
    Weiseger RA, Pinkus LM, Jakoby WB: Thiol-S-methyltransferase: Suggested role in detoxification of intestinal hydrogen sulphide. Biochem Pharmacol 29:2885-2887, 1980PubMedGoogle Scholar
  26. 26.
    Pacifici GM, Franchi M, Gervasi PG, Longo V, di Simplicio P, Temellini A, Giuliani L: Profile of drug-metabolising enzymes in human ileum and colon. Pharmacol 38:137-145, 1989Google Scholar
  27. 27.
    Pacifici GM, Romiti P, Santerini S, Giuliani L: S-Methyltransferases in human intestine: Differential distribution of the microsomal thiol methyltransferase and cytosolic thiopurine methyltransferase along the human bowel. Xenobiotica 23:671-679, 1993PubMedGoogle Scholar
  28. 28.
    Roediger WEW: The role of sulphur metabolism and mercapto fatty acids in the aetiology of ulcerative colitis. InInflammatory Bowel Diseases: Progress in Basic Research and Clinical Implications. H Goebell, K Ewe, H Malchow, C Koelbel (eds). Dordrecht, Kluwer Academic, 1991, pp 17-27Google Scholar
  29. 29.
    Ramakrishna BS, Roberts-Thomson IC, Pannall PR, Roediger WEW: Impaired sulphation of phenol by the colonic mucosa in quiescent and active ulcerative colitis. Gut 32:46-49, 1991PubMedGoogle Scholar
  30. 30.
    Filipe MI: Mucins in the human gastrointe stinal epithelium: A review. Invest Cell Pathol 2:195-216, 1979PubMedGoogle Scholar
  31. 31.
    Raouf AH, Tsai HH, Parker N, Hoffman J, Walker RJ, Rhodes JM: Sulphation of colonic and rectal mucin in inflammatory bowel disease: Reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci 83:623-626, 1992PubMedGoogle Scholar
  32. 32.
    Pacifici GM, Franchi M, Giuliani L: Characterization of sulphotransferase in human ileum and colon. Pharmacol 38:146- 150, 1989Google Scholar
  33. 33.
    Cappiello M, Giuliani L, Pacifici GM: Differential distribution of phenol and catechol sulphotransferases in human liver and intestinal mucosa. Pharmacol 40:69-76, 1990Google Scholar
  34. 34.
    Truelove SC, Witts LJ: Cortisone in ulcerative colitis: Final report on a therapeutic trial. BMJ 2:1041-1048, 1955Google Scholar
  35. 35.
    Weinshilboum RM, Sladek S, Klumpp S: Human erythrocyte thiol methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta 97:57-71, 1979Google Scholar
  36. 36.
    Keith RA, van Loon J, Wussow LF, Weinshilboum RM: Thiol methylation pharmacogenetics: Heritability of human thiol methyltransferase activity. Clin Pharmacol Ther 34:521-528, 1983PubMedGoogle Scholar
  37. 37.
    Waring RH, Steventon GB, Sturman SG, Heathfield MTE, Smith MCG, Williams AC: S-Methylation in motor neurone disease and Parkinson's disease. Lancet 2:356-357, 1989PubMedGoogle Scholar
  38. 38.
    Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254, 1976CrossRefPubMedGoogle Scholar
  39. 39.
    Folds A, Meek JL: Rat brain phenolsulphotransferase—partial purification and some properties. Biochim Biophys Acta 327:365-374, 1973PubMedGoogle Scholar
  40. 40.
    Anderson RJ, Weinshilboum RM: Phenolsulphotransferase in human tissue: Radiochemical enzymatic assay and biochemical properties. Clin Chim Acta 103:79-90, 1980PubMedGoogle Scholar
  41. 41.
    Babidge WJ, Millard SH, Roediger WEW: Thiol methyltransferase activity in colonocytes and erythrocyte membranes. J Clin Pathol 48:641-644, 1995PubMedGoogle Scholar
  42. 42.
    Bradley H, Waring RH, Emery P: Reduced thiol methyl transferase activity in red blood cell membranes from patients with rheumatoid arthritis. J Rheumatol 18:1787-1789, 1991PubMedGoogle Scholar
  43. 43.
    Satsangi J, Jewell DP, Rosenberg WMC, Bell JI: Genetics of inflammatory bowel disease. Gut 35:696-700, 1994PubMedGoogle Scholar
  44. 44.
    Reiter C, Weinshilboum RM: Platelet phenol sulfotransferase activity: correlation with sulfate conjugation of acetaminophen. Clin Pharmacol Ther 32:612-621, 1982PubMedGoogle Scholar
  45. 45.
    Jones AL, Roberts RC, Coughtrie MW: The human phenosulphotransferase polymorphism is determined by the level of expression of the enzyme protein. Biochem J 296:287-290, 1993PubMedGoogle Scholar
  46. 46.
    Harries AD, Baird A, Rhodes J: Non-smoking: A feature of ulcerative colitis. BMJ 284:706, 1982PubMedGoogle Scholar
  47. 47.
    Godet PG, May GR, Sutherland LR: Meta-analysis of the role of oral contraceptive agents in inflammatory bowel disease. Gut 37:668-673, 1995PubMedGoogle Scholar
  48. 48.
    Waring RH, Emery P: The genetic origin of responses to drugs. Br Med Bull 51:449-461, 1995PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Maxton C. L. Pitcher
  • Emily R. Beatty
  • Robert M. Harris
  • Rosemary H. Waring
  • John H. Cummings

There are no affiliations available

Personalised recommendations