Skip to main content
Log in

Liposomes with Incorporated MHC Class Il/Peptide Complexes as Antigen Presenting Vesicles for Specific T Cell Activation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to design a well-characterized liposomal carrier system for multivalent antigen presentation in order to activate T cells.

Methods. MHC class II molecules were loaded with peptide and subsequently reconstituted into liposomes. A FACS assay was developed to monitor peptide loading and MHC class II incorporation in the liposomes. For in vitro testing of the resulting MHC class II/peptide liposomes, a T cell hybridoma assay was employed.

Results. The FACS assay provided a qualitative means to visualize the amount of incorporated MHC class II and peptide molecules that were oriented in the appropriate way for antigen presentation to the T cells. Interestingly, when MHC class II molecules were loaded with the appropriate peptide prior to liposome incorporation, such liposomes were fully capable of inducing IL-2 production of a T cell hybridoma.

Conclusions. This is the first article showing that MHC class II/peptide liposomes can serve as 'artificial antigen presenting cells' for activation of a CD4+ T cell hybridoma. As compared to soluble MHC class II/ peptide complexes, the multivalency of liposomal complexes may be an important advantage when studying possible applications in immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Ashwell and R. H. Schwartz. T-cell recognition of antigen and the Ia molecule as a ternary complex, Nature 320:176–179 (1986).

    Google Scholar 

  2. C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson. The B7 and CD28 receptor families. Immunol. Today 15:321–331 (1994).

    Google Scholar 

  3. M. K. Jenkins and R. H. Schwartz. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165:302–319 (1987).

    Google Scholar 

  4. M. L. Dustin, J. M. Miller, S. Ranganath, D. A. A. Vignali, N. J. Viner, C. A. Nelson, and E. R. Unanue. TCR-mediated adhesion of T cell hybridomas to planar bilayers containing purified MHC II/peptide complexes and receptor shedding during detachment. J. Immunol. 157:2014–2021 (1996).

    Google Scholar 

  5. J. D. Altman, P. A. H. Moss, P. J. R. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. Phenotypic analysis of antigen-specific T lymphocytes, Science 274:94–96 (1996).

    Google Scholar 

  6. K. Matsui, J. J. Boniface, P. Steffner, P. A. Reay, and M. M. Davis. Kinetics of T-cell receptor binding to peptide/I-Ek complexes: correlation of the dissociation rate with T-cell responsiveness. Proc. Natl. Acad. Sci. USA 91:12862–12866 (1994).

    Google Scholar 

  7. D. S. Lyons, S. A. Lieberman, J. Hampl, J. J. Boniface, Y. Chien, L. J. Berg, and M. M. Davis. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5:53–61 (1996).

    Google Scholar 

  8. M. W. Nicolle, B. Nag, S. D. Sharma, N. Willcox, A. Vincent, D. J. Ferguson, and J. Newsom-Davis. Specific tolerance to an acetylcholine receptor epitope induced in vitro in myasthenia gravis CD4+ lymphocytes by soluble major histocompatibility complex class II-peptide complexes. J. Clin. Invest. 93:1361–1369 (1994).

    Google Scholar 

  9. S. Arimilli, J. B. Mumm, and B. Nag. Antigen-specific apoptosis in immortalized T cells by soluble MHC class II-peptide complexes. Immunol. Cell Biol. 74:96–104 (1996).

    Google Scholar 

  10. J.-P. Abastado, Y.-C. Lone, A. Casrouge, G. Boulot, and P. Kourilsky. Dimerization of soluble major histocompatibility complex-peptide complexes is sufficient for activation of T cell hybridoma and induction of unresponsiveness. J. Exp. Med. 182:439–447 (1995).

    Google Scholar 

  11. Z. Reich, J. J. Boniface, D. S. Lyons, N. Borochov, E. J. Wachtel, and M. M. Davis. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387:617–620 (1997).

    Google Scholar 

  12. S. Valitutti and A. Lanzavecchia. Serial triggering of TCRs: a basis for the sensitivity and specificity of antigen recognition. Immunol. Today 18:299–304 (1997).

    Google Scholar 

  13. A. S. Shaw and M. L. Dustin. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6:361–369 (1997).

    Google Scholar 

  14. G. F. Kersten, A. M. van de Put, T. Teerlink, E. C. Beuvery, and D. J. Crommelin. Immunogenicity of liposomes and iscoms containing the major outer membrane protein of Neisseria gonorrhoeae: influence of protein content and liposomal bilayer composition. Infect. Immun. 56:1661–1664 (1988).

    Google Scholar 

  15. A. Chakrabarti, J. Matko, N. A. Rahman, B. G. Barisas, and M. Edidin. Self-association of class I major histocompatibility complex molecules in liposome and cell surface membranes. Biochemistry 31:7182–7189 (1992).

    Google Scholar 

  16. T. H. Watts, A. A. Brian, J. W. Kappler, P. Marrack, and H. M. McConnell. Antigen presentation by supported planar membranes containing affinity-purified I-Ad. Proc. Natl. Acad. Sci. USA 81:7564–7568 (1984).

    Google Scholar 

  17. H. Quill and R. H. Schwartz. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. J. Immunol. 138:3704–3712 (1987).

    Google Scholar 

  18. B. P. Babbitt, G. Matsueda, E. Haber, E. R. Unanue, and P. M. Allen. Antigenic competition at the level of peptide-Ia binding. Proc. Natl. Acad. Sci. USA 83:4509–4513 (1986).

    Google Scholar 

  19. C. M. Coeshott, R. W. Chesnut, R. T. Kubo, S. F. Grammer, D. M. Jenis, and H. M. Grey. Ia-specific mixed leukocyte reactive T cell hybridomas:analysis of their specificity by using purified class II MHC molecules in a synthetic membrane system. J. Immunol. 136:2832–2838 (1986).

    Google Scholar 

  20. I. Joosten, M. H. Wauben, M. C. Holewijn, K. Reske, L. O. Pedersen, C. F. Roosenboom, E. J. Hensen, W. van Eden, and S. Buus. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules. Int. Immunol. 6:751–759 (1994).

    Google Scholar 

  21. J. M. Steward and J. D. Young. Solid Phase Peptide Synthesis. Pierce Chemical, Rockford, IL (1984).

    Google Scholar 

  22. W. Jiskoot, T. Teerlink, E. C. Beuvery, and D. J. A. Crommelin. Preparation of liposomes via detergent removal from mixed micelles by dilution: the effect of bilayer composition and process parameters on liposome characteristics. Pharm. Weekbl. [Sci] 8:259–265 (1986).

    Google Scholar 

  23. L. S. Minamide and J. R. Bamburg. A filter paper dye-binding assay for quantitative determination of protein without interference from reducing agents or detergents. Anal. Biochem. 190:66–70 (1990).

    Google Scholar 

  24. A. M. H. Boots, M. J. van Lierop, M. H. M. Wauben, P. J. S. van Kooten, E. J. Hensen, and W. van Eden. CD4 rat x rat and mouse x rat T cell hybridomas produced by fusion of established T cell lines and clones to W/Fu(C58N)D. J. Immunol. Meth. 144:1–10 (1991).

    Google Scholar 

  25. K. Dornmair, B. Rothenhausler, and H. M. McConnell. Structural intermediates in the reactions of antigenic peptides with MHC molecules. Cold Spring Harbor Symp. Quant. Biol. 54:409–416 (1989).

    Google Scholar 

  26. B. Nag, P. V. Mukku, S. Arimilli, D. Phan, S. V. Deshpande, and J. L. Winkelhake. Antigenic peptide binding to MHC class II molecules at increased peptide concentrations. Mol. Immunol. 31:1161–1168 (1994).

    Google Scholar 

  27. N. K. Childers, S. M. Michalek, J. H. Eldridge, F. R. Denys, A. K. Berry, and J. R. McGhee. Characterization of liposome suspensions by flow cytometry. J. Immunol. Meth. 119:135–143 (1989).

    Google Scholar 

  28. L. S. Taams, A. J. M. L. van Rensen, M. C. M. Poelen, C. A. C. M. van Els, A. C. Besseling, J. P. A. Wagenaar, W. van Eden, and M. H. M. Wauben. Anergic T cells actively suppress T cell responses via the antigen presenting cell. Eur. J. Immunol. 28:2902–2912 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemiek J. M. L. van Rensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rensen, A.J.M.L., Wauben, M.H.M., Grosfeld-Stulemeyer, M.C. et al. Liposomes with Incorporated MHC Class Il/Peptide Complexes as Antigen Presenting Vesicles for Specific T Cell Activation. Pharm Res 16, 198–204 (1999). https://doi.org/10.1023/A:1018864005620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018864005620

Navigation