Skip to main content
Log in

The Criteria for the Transitions Between the Various Oxidation Modes of Binary Solid-Solution Alloys Forming Immiscible Oxides at High Oxidant Pressures

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The possible high-temperature corrosion modes ofbinary solid-solution alloys forming two immisciblecompounds by a single oxidant include (1) the exclusivegrowth of external scales of the most-noble component, which may or may not be associated with theinternal oxidation of the most-reactive component, (2)the formation of composite external scales containing amixture of the two compounds, or finally (3) the exclusive growth of the most-stable compound asan external scale. The conditions for the stability ofeach scale structure depend on a number of thermodynamicand kinetics parameters, whose effects are examined quantitatively in this paper. Theconditions for the stability of the various structuresand the criteria for the transitions among them are alsoexamined. The maximum number of possible scale structures is four, but it can reduce to threeand, in some cases, only to two. In particular, theinternal oxidation of the most-reactive component maynot occur if the stabilities of the two oxides are not sufficiently different from eachother.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. D. Bastow, G. C. Wood, and D. P. Whittle, Oxid. Met. 16, 1 (1981).

    Google Scholar 

  2. C. Wagner, Corros. Sci. 9, 91 (1969).

    Google Scholar 

  3. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, New York, 1988).

    Google Scholar 

  4. C. Wagner, Corros. Sci. 8, 889 (1968).

    Google Scholar 

  5. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  6. C. Wagner, Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  7. R. A. Rapp, Corrosion 21, 382 (1965).

    Google Scholar 

  8. F. Maak, Z. Metall. 52, 545 (1961).

    Google Scholar 

  9. F. Gesmundo and F. Viani, Oxid. Met. 25, 269 (1986).

    Google Scholar 

  10. A. Atkinson, Corros. Sci. 22, 87 (1982).

    Google Scholar 

  11. D. P. Whittle, D. J. Young, and W. W. Smeltzer, J. Electrochem. Soc. 123, 1073 (1976).

    Google Scholar 

  12. W. W. Smeltzer and D. P. Whittle, J. Electrochem. Soc. 125, 1116 (1978).

    Google Scholar 

  13. F. Gesmundo, P. Castello, F. Viani, and J. Philibert, Oxid. Met. 47, 91 (1997).

    Google Scholar 

  14. F. Gesmundo and M. Pereira, Oxid. Met. 47, 507 (1997).

    Google Scholar 

  15. B. Chattopahyay and G. C. Wood, Oxid. Met. 2, 373 (1970).

    Google Scholar 

  16. D. P. Whittle, in High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), p. 171.

    Google Scholar 

  17. G. C. Wood and F. H. Stott, Mater. Sci. Technol. 3, 519 (1987).

    Google Scholar 

  18. R. A. Rapp, Acta Metall. 9, 730 (1961).

    Google Scholar 

  19. G. Bohm and M. Kahlweit, Acta Metall. 12, 641 (1964).

    Google Scholar 

  20. F. Gesmundo, P. Castello, and F. Viani, Oxid. Met. 46, 383 (1996).

    Google Scholar 

  21. F. Gesmundo, P. Castello, and F. Viani, Oxid. Met. 47, 215 (1997).

    Google Scholar 

  22. F. Gesmundo, P. Nanni, and D. P. Whittle, J. Electrochem. Soc. 127, 1773 (1980).

    Google Scholar 

  23. M. J. Monteiro, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 43, 527 (1995).

    Google Scholar 

  24. M. C. Rebello, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 43, 561 (1995).

    Google Scholar 

  25. J. F. Oliveira, Y. Niu, F. C. Rizzo, and F. Gesmundo, Oxid. Met. 44, 399 (1995).

    Google Scholar 

  26. Y. Niu, F. Gesmundo, F. Viani, and W. T. Wu, Oxid. Met. 47, 21 (1997).

    Google Scholar 

  27. F. Gesmundo, Y. Niu, P. Castello, F. Viani, A. M. Huntz, and W. T. Wu, Corros. Sci. 38, 1295 (1996).

    Google Scholar 

  28. I. G. Wright, Oxidation of Iron-, Nickel-and Cobalt-Base Alloys (Metals and Ceramics Information Center, June, 1972).

  29. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982).

    Google Scholar 

  30. P. Kofstad and K. P. Lillerud, J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  31. G. Zheng and D. J. Young, Oxid. Met. 42, 163 (1994).

    Google Scholar 

  32. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 42, 285 (1994).

    Google Scholar 

  33. A. W. Bowen and G. M. Leak, Met. Trans. 1, 1695 (1970).

    Google Scholar 

  34. T. Heumann and R. Imm, J. Phys. Chem. Solids 29, 1613 (1968).

    Google Scholar 

  35. J. Takada, K. Kashiwagi, and M. Adachi, J. Mater. Sci. 19, 3451 (1984).

    Google Scholar 

  36. P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).

    Google Scholar 

  37. J. R. Weeton, Trans ASM 44, 436 (1952).

    Google Scholar 

  38. K. Hirano, R. P. Agarwala, B. L. Averbach, and M. Cohen, J. Appl. Phys. 33, 3049 (1962).

    Google Scholar 

  39. U. Seybolt and C. H. Mathewson, Trans. Met. Soc. AIME 117, 156 (1935).

    Google Scholar 

  40. P. J. Grundy and P. J. Nolan, J. Mater. Sci. Lett. 7, 1086 (1972).

    Google Scholar 

  41. K. Momma, H. Suto, and H. Oikawa, J. Jpn. Inst. Met. 28, 188 (1964).

    Google Scholar 

  42. D. F. Kalinovich, I. I. Kovenskii, and M. D. Smolin, Fiz., Tverd. Tela 10, 569 (1968).

    Google Scholar 

  43. J. W. Park and C. J. Alstatter, Met. Trans. 18A, 43 (1987).

    Google Scholar 

  44. F. S. Pettit, Trans. Met. Soc. AIME 239, 1296 (1967).

    Google Scholar 

  45. J. A. Nesbitt, J. Electrochem. Soc. 136, 1511 (1989).

    Google Scholar 

  46. H. Hindam and W. W. Smeltzer, J. Electrochem. Soc. 127, 1622 (1980).

    Google Scholar 

  47. A. Green and N. Swindells, Mater. Sci. Technol. 1, 101 (1985).

    Google Scholar 

  48. T. B. Massalski, J. L. Murry, L. H. Bennett, and H. Baker, eds., Binary Alloy Phase Diagrams (ASM, Materials Park, 1986).

    Google Scholar 

  49. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass, Oxid. Met. 39, 197 (1993).

    Google Scholar 

  50. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 42, 409 (1994).

    Google Scholar 

  51. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass, Oxid. Met. 42, 465 (1994).

    Google Scholar 

  52. F. Gesmundo, Y. Niu, and F. Viani, Oxid. Met. 43, 379 (1995).

    Google Scholar 

  53. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 45, 51 (1996).

    Google Scholar 

  54. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met. 47, 355 (1997).

    Google Scholar 

  55. F. H. Stott and G. C. Wood, Mater. Sci. Technol. 4, 1072 (1988).

    Google Scholar 

  56. D. P. Whittle and G. C. Wood, Corros. Sci. 8, 295 (1968).

    Google Scholar 

  57. S. J. Rothman and N. L. Peterson, Phys. Stat. Solidi 35, 305 (1969).

    Google Scholar 

  58. G. Brunel, G. Cizeron, and P. Lacombe, C.R. Acad. Sci. Paris C270, 393 (1970).

    Google Scholar 

  59. M. L. Narula, V. B. Tare, and W. L. Worrell, Met. Trans. 14B, 673 (1983).

    Google Scholar 

  60. J. Askill, Tracer Diffusion Data for Metals, Alloys, and Simple Oxides (IFIy Plenum, New York, 1970).

    Google Scholar 

  61. C. Wagner, J. Electrochem. Soc. 103, 627 (1956).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Niu, Y. The Criteria for the Transitions Between the Various Oxidation Modes of Binary Solid-Solution Alloys Forming Immiscible Oxides at High Oxidant Pressures. Oxidation of Metals 50, 1–26 (1998). https://doi.org/10.1023/A:1018847116670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018847116670

Navigation