General Relativity and Gravitation

, Volume 29, Issue 4, pp 519–529 | Cite as

Local and Global Light Bending in Einstein's and Other Gravitational Theories

  • Jürgen Ehlers
  • Wolfgang Rindler


To remedy a certain confusion in the literature, we stress the distinction between local and global light bending. Local bending is a purely kinematic effect between mutually accelerating reference frames tracking the same signal, and applies via Einstein's equivalence principle exactly and equally in Newton's, Einstein's, Nordström's and other gravitational theories, independently of all field equations. Global bending, on the other hand, arises as an integral of local bending and depends critically on the conformal spacetime structure and thus on the specific field equations of a given theory.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nordström, G. (1913). Ann. der Physik 42, 533.Google Scholar
  2. 2.
    Norton, J. D. (1992). Archive for the History of Exact Sciences 45, 17.Google Scholar
  3. 3.
    Straumann, N. (1984). General Relativity and Relativistic Astrophysics (Springer-Verlag, Berlin, Heidelberg).Google Scholar
  4. 4.
    Pauli, W. (1963). Relativitätstheorie (reprint with additional footnotes, Paolo Boringhieri Publishers, Torino).Google Scholar
  5. 5.
    Will, C. M. (1987). In 300 Years of Gravitation, S. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge).Google Scholar
  6. 6.
    Rindler, W. (1977). Essential Relativity (2nd. ed., Springer-Verlag, New York, Heidelberg, Berlin).Google Scholar
  7. 7.
    Einstein, A. (1907). Jahrbuch für Radioaktivität und Elektronik 4, 411.Google Scholar
  8. 8.
    Pais, A. (1982). Subtle is the Lord (Oxford University Press, Oxford).Google Scholar
  9. 9.
    Penrose, R., and Rindler, W. (1986). Spinors and Spacetime, vol.2 (Cambridge University Press, Cambridge).Google Scholar
  10. 10.
    Synge, J. L. (1960). Relativity: The General Theory (North-Holland, Amsterdam).Google Scholar
  11. 11.
    Einstein, A. (1911). Ann. der Physik 35, 898.Google Scholar
  12. 12.
    Einstein, A. (1915). Ber. Preuss. Akad. d. Wiss. 831.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jürgen Ehlers
  • Wolfgang Rindler

There are no affiliations available

Personalised recommendations