Skip to main content
Log in

The Influence of Yttrium Implantation on the Oxidation of Impure Iron Containing C and Mn at 700°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A study of impurity-yttrium interactions hasbeen performed during iron oxidation [p(O2)= 0.04 Pa, T = 700°C]. Yttrium-implanted specimensalways exhibit better oxidation behavior compared withblank specimens. On pure iron or the Fe 0.054 wt.%C alloy thebeneficial effect is attributed toFe2YO4 formation. With themanganese-containing alloys (Fe 0.2 wt.%Mn), theprotective effect of yttrium is attributed to YMnO3 formation. The best oxidationbehavior is obtained with implanted Fe0.18 wt.%Mn-0.041wt.%C alloys due to the formation of an YMnO3oxide subscale at the scale-alloy interface. Yttriumimplantation also hinders carbon segregation at theoxide-alloy interface. This effect ensures better scaleadherence. With the most-impure alloy, yttriumimplantation also changes the growth process fromexternal cation diffusion to predominant inward-oxygendiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Bennett, B. A. Bellamy, C. F. Knight, N. Meadows, and N. J. Eyre, Mat. Sci. Eng. 69, 359 (1985).

    Google Scholar 

  2. M. J. Bennett, H. E. Bishop, P. R. Chalker, and A. T. Tuson, Mat. Sci. Eng. 90, 177 (1987).

    Google Scholar 

  3. J. H. Kort, T. Fransen, and P. J. Gellings, Appl. Surface Sci. 25, 237 (1986).

    Google Scholar 

  4. N. V. Pleshivtsev and E. A. Krasikov, Russian Metall. Metally 4, 64 (1995).

    Google Scholar 

  5. J. Jedlinski, M. Krasovec, G. Borchardt, and J. W. Quadakkers, J. Phys. 3, 591 (1993).

    Google Scholar 

  6. J. K. Tien and F. S. Pettit, Metall. Trans. 5, 1587 (1972).

    Google Scholar 

  7. I. M. Allam, D. P. Whittle, and J. Stringer, Oxid. Met. 12, 35 (1978).

    Google Scholar 

  8. J. Stringer, Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

  9. F. I. Wei and F. H. Stott, Corros. Sci. 29(7), 839 (1989).

    Google Scholar 

  10. H. Buscail, V. Gauthey, J. P. Larpin, J. J. Heizmann, and C. Laruelle, J. Chem. Phys. 92, 1257 (1995).

    Google Scholar 

  11. C. H. Yang, P. A. Labun, G. Welsch, and T. E. Mitchell, J. Mater. Sci. 22, 449 (1987).

    Google Scholar 

  12. E. Schumann, Oxid. Met. 43, 157 (1995).

    Google Scholar 

  13. E. A. Polman, T. Fransen, and P. J. Gellings, Oxid. Met. 33, 135 (1990).

    Google Scholar 

  14. K. Przybylski and G. J. Yurek, Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  15. Y. Saito, B. Önay, and T. Maruyama, J. Phys. 3, 217 (1993).

    Google Scholar 

  16. M. J. Bennett, G. Dearnaley, M. R. Houlton, and R. W. M. Hawes, in Ion Implantation into Metals, V. Ashworth, W. A. Grant, and R. P. M. Procter, eds. (New York, 1982), p. 264.

  17. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met. 34, 173 (1990).

    Google Scholar 

  18. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met. 34, 201 (1990).

    Google Scholar 

  19. M. F. Stroosnijder, N. Zheng, W. J. Quadakkers, and R. Hofman, Oxid. Met. 46, 19 (1996).

    Google Scholar 

  20. D. L. Douglass, P. Kofstad, A. Rhamel, and G. C. Wood, Oxid. Met. 45, 529 (1996).

    Google Scholar 

  21. F. H. Stott, J. S. Punni, and G. C. Wood, Inst. Corros. Sci. Technol. 1, 37 (1984).

    Google Scholar 

  22. P. Y. Hou and J. Stringer, Oxid. Met. 34, 299 (1990).

    Google Scholar 

  23. D. R. Sigler, Oxid. Met. 32, 337 (1989).

    Google Scholar 

  24. P. Y. Hou, Z. R. Shui, G. Y. Chuang, and J. Stringer, J. Electrochem. Soc. 139, 1119 (1992).

    Google Scholar 

  25. J. Balmain and A. M. Huntz, Oxid. Met. 46, 213 (1996).

    Google Scholar 

  26. M. F. Stroosnijder, J. D. Sunderkotter, M. J. Cristobal, H. Jenett, K. Isenbügel, and M. A. Baker, Surface Coating Technol. 83, 205 (1996).

    Google Scholar 

  27. H. W. Wang, D. Z. Yang, W. D. Shi, and S. Patu, Nuclear Instr. Methods Phys. Res. B 108, 371 (1996).

    Google Scholar 

  28. H. W. Wang, D. Z. Yang, W. D. Shi, and S. Patu, Scripta Metall. Mater. 32, 2001 (1995).

    Google Scholar 

  29. J. M. Hampikian and D. I. Potter, Oxid. Met. 38, 137 (1990).

    Google Scholar 

  30. F. Alonso, A. Arizaga, A. Garcia, and J. I. Onate, Surface Coating Technol. 66, 291 (1994).

    Google Scholar 

  31. V. Srinivasan, A. W. McCormick, and A. K. Rai, Oxid. Met. 34, 401 (1990).

    Google Scholar 

  32. C. Courty, H. Buscail, and J. P. Larpin, J. Chem. Phys. 93, 1509 (1996).

    Google Scholar 

  33. H. Buscail and J. P. Larpin, Solid State Ionics 92, 243 (1996).

    Google Scholar 

  34. H. Buscail, J. P. Larpin, J. J. Heizmann, and C. Laruelle, Rev. Met. CIT/ SGM 5, 661 (1995).

    Google Scholar 

  35. P. Hembree and J. B. Wagner, Jr., Trans AIME 245, 1547 (1969).

    Google Scholar 

  36. P. Kostad, High Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 68.

    Google Scholar 

  37. C. R. A. Catlow, W. C. Mackrodt, M. J. Norgett, and A. M. Stoneham, Phil. Mag. A40, 161 (1979).

    Google Scholar 

  38. G. Hettich, H. Mehrer, and K. Maier, Scripta Metall. 11, 795 (1977).

    Google Scholar 

  39. H. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, Oxid. Met. 46, 423 (1996).

    Google Scholar 

  40. C. Wagner, Atomic Movements (ASM, Cleveland, 1951), p. 153.

    Google Scholar 

  41. P. Kostad, High Temperature Corrosion (Elsevier Applied Science, London, 1988), p. 15.

    Google Scholar 

  42. H. Schmalzried and Y. Üshima, Ber. Busenges Phys. Chem. 93, 1343 (1989).

    Google Scholar 

  43. Y. Üshima, H. Schmalzried, and J. Koepke, Phil. Mag. A61, 707 (1990).

    Google Scholar 

  44. Y. Üshima and H. Schmalzried, Phil. Mag. A61, 725 (1990).

    Google Scholar 

  45. C. A. Wert, J. Met. 188, 1242 (1950).

    Google Scholar 

  46. R. H. Dremus, Trans. Met. Soc. AIME 218, 596 (1960).

    Google Scholar 

  47. J. P. Plumensi, A. Kohn, G. Vagnard, and J. Manenc, Corros. Sci. 9, 309 (1969).

    Google Scholar 

  48. J. Manenc and G. Vagnard, Corros. Sci. 9, 857 (1969).

    Google Scholar 

  49. J. Baud, J. P. Plumensi, and J. Manenc, Werkst. Korros. 23, 876 (1972).

    Google Scholar 

  50. C. J. Wang and J. G. Duh, J. Mater. Sci. 23, 3447 (1988).

    Google Scholar 

  51. H. Buscail, C. Courty, and J. P. Larpin, J. Phys. 5, 375 (1995).

    Google Scholar 

  52. A. Brahmi, Ph.D. Thesis, Institut National des Sciences Appliquées de Lyon, 1993.

  53. H. Buscail and J. P. Larpin, Oxid. Met. 43, 273 (1995).

    Google Scholar 

  54. J. B. Price and J. B. Wagner, Jr., J. Electrochem. Soc. 117, 242 (1970).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscail, H., Courty, C., Stroosnijder, M.F. et al. The Influence of Yttrium Implantation on the Oxidation of Impure Iron Containing C and Mn at 700°C. Oxidation of Metals 49, 561–581 (1998). https://doi.org/10.1023/A:1018842727206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018842727206

Navigation