Skip to main content
Log in

High-Temperature Oxidation of a Sn-Zn-Al Solder

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of 91Sn-9(95Zn-5Al) solder in theliquid state, 250°C, was studied by thermalgravimetric analysis (TGA). The oxidation behavior of63Sn-37Pb, 91Sn-9Zn, 99.4Sn-0.6Al, and Sn was alsoinvestigated for comparison. The weight gains per unitsurface area descend in the order: 63Sn-37Pb > Sn> 91Sn-9Zn > 91Sn-9(95Zn-5Al) > 99.4Sn-0.6Al.The initial weight gains of the materials investigated increase linearly with reaction time, whileparabolic behavior exists after the linear stage. Therate constants of the oxidation reaction for the tworeaction stages were determined. Activation energies for oxidation of the five materials weredetermined in the range of 250 to 400°C. Theactivation energies, derived from the linear rateconstants for the early stages of oxidation, are 27.7kJ/mole for 99.4Sn-0.6Al, 23.3 kJ/mole for 91Sn-9Zn, 21.4kJ/mole for 91Sn-9(95Zn-5Al), 20.5 kJ/mole for63Sn-37Pb, and 19.8 kJ/mole for Sn. Thesurface-oxidation behavior was investigated further withelectron spectroscopy for chemical analysis (ESCA) and Auger electronspectroscopy (AES). AES profiles showed that oxides ofZn and Al formed on 91Sn-9Zn and 91Sn-9(95Zn-5Al)solders, while tin oxide is formed on 63Sn-37Pbsolder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Glazer, Intern. Mater. Rev. 40(2), 65–93 (1995).

    Google Scholar 

  2. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, Appl. Phys. Lett. 63(1), 15–17 (1993).

    Google Scholar 

  3. H. Maroori, S. Vaynman, J. Chin, B. Moran, L. M. Keer, and M. E. Fine, Mat. Res. Soc. Symp. Proc. 390, 161–175 (1995).

    Google Scholar 

  4. J. H. Lau and Y.-H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies chap. 5 (McGraw-Hill, New York, 1997).

    Google Scholar 

  5. A. Sebaoun, D. Vincant, and D. Treheux, Mater. Sci. Technol.. 3, 241 (1987).

    Google Scholar 

  6. L. Allegra and J. C. Zoccola, Mater. Performance 22(1), 5 (1993).

    Google Scholar 

  7. H. E. Townsend and J. C. Zoccola, Mater. Performance 18(10), 13 (1979).

    Google Scholar 

  8. K. L. Lin, L. H. Wen, and T. P. Liu, J. Electronic Mater., 27(3), 97 (1998).

    Google Scholar 

  9. K. L. Lin and L. H. Wen, J. Materials Sci. Mater. Electron., 9, 5 (1998).

    Google Scholar 

  10. B. Graunuller, Feingeratetechnik 39(1), 7 (1990).

    Google Scholar 

  11. K. Kumar and A. Moscaritolo, J. Electrochem. Soc. 128(2), 379 (1981).

    Google Scholar 

  12. R. J. K. Wassink, Soldering in Electronics, 2nd Ed. (Electrochemical Publications Limited, Ayr, Scotland, 1989), p. 567.

    Google Scholar 

  13. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KL., Liu, TP. High-Temperature Oxidation of a Sn-Zn-Al Solder. Oxidation of Metals 50, 255–267 (1998). https://doi.org/10.1023/A:1018840405283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018840405283

Navigation