Skip to main content
Log in

Connections Between the Thermodynamics of Classical Electrodynamic Systems and Quantum Mechanical Systems for Quasielectrostatic Operations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The thermodynamic behavior is analyzed of a single classical charged particle in thermal equilibrium with classical electromagnetic thermal radiation, while electrostatically bound by a fixed charge distribution of opposite sign. A quasistatic displacement of this system in an applied electrostatic potential is investigated. Treating the system nonrelativistically, the change in internal energy, the work done, and the change in caloric entropy are all shown to be expressible in terms of averages involving the distribution of the position coordinates alone. A convenient representation for the probability distribution is shown to be the ensemble average of the absolute square value of an expansion over the eigenstates of a Schrödinger-like equation, since the heat flow is shown to vanish for each hypothetical “state.” Subject to key assumptions highlighted here, the demand that the entropy be a function of state results in statistical averages in agreement with the form in quantum statistical mechanics. Examining the very low and very high temperature situations yields Planck's and Boltzmann's constants. The blackbody radiation spectrum is then deduced. From the viewpoint of the theory explored here, the method in quantum statistical mechanics of statistically counting the “states” at thermal equilibrium by using the energy eigenvalue structure, is simply a convenient counting scheme, rather than actually representing averages involving physically discrete energy states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. H. Boyer, Phys. Rev. D 11, 790 (1975).

    Google Scholar 

  2. L. de la Peña and A. M. Cetto, The Quantum Dice-An Introduction to Stochastic Electrodynamics (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  3. T. H. Boyer, in Foundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980), pp. 49–63.

    Google Scholar 

  4. T. H. Boyer, Sci. American 253(2), 70 (1985).

    Google Scholar 

  5. D. C. Cole, “Reviewing and Extending Some Recent Work on Stochastic Electrodynamics,” in Essays on Formal Aspects of Electromagnetic Theory, A. Lakhtakia, ed. (World Scientific, Singapore, 1993), pp. 501–532.

    Google Scholar 

  6. D. C. Cole and A. Rueda, Found. Phys. 26, 1556 (1996).

    Google Scholar 

  7. See, for example, J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 116.

    Google Scholar 

  8. D. C. Cole, Phys. Rev. A 42, 1847 (1990).

    Google Scholar 

  9. T. H. Boyer, Phys. Rev. D 13, 2832 (1976). J. H. Van Vleck and D. L. Huber, Rev. Mod. Phys. 49, 939 (1977). T. H. Boyer, Phys. Rev. A 18, 1228 (1978). R. Blanco, L. Pesquera, and E. Santos, Phys. Rev. D 27, 1254 (1983). R. Blanco, L. Pesquera, and E. Santos, Phys. Rev. D 29, 2240 (1984). P. Claverie, L. Pesquera, and F. Soto, Phys. Lett. 80A, 113 (1980). P. Claverie and F. Soto, J. Math. Phys. 23, 753 (1982). L. Pesquera and P. Claverie, J. Math. Phys. 23, 1315 (1982).

    Google Scholar 

  10. D. C. Cole, Found. Phys. 20, 225 (1990).

    Google Scholar 

  11. T. H. Boyer, Found. Phys. 19, 1371 (1989).

    Google Scholar 

  12. D. C. Cole, Phys. Rev. A 42, 7006 (1990).

    Google Scholar 

  13. D. C. Cole, Phys. Rev. A 45, 8471 (1992).

    Google Scholar 

  14. D. C. Cole, Phys. Rev. A 45, 8953 (1992).

    Google Scholar 

  15. D. C. Cole and H. E. Puthoff, Phys. Rev. E 48, 1562 (1993).

    Google Scholar 

  16. D. C. Cole, Phys. Rev. E 51, 1663 (1995).

    Google Scholar 

  17. D. C. Cole, “Energy and Thermodynamic Considerations Involving Electromagnetic Zero-Point Radiation,” Proc. of Space Technology and Applications International Forum (STAIF 99), AIP 458, M. S. El-Genk, ed. (1999), pp. 960–967.

  18. D. C. Cole, “Calculations on electromagnetic zero-point contributions to mass and perspectives,” in Proceedings of NASA conference, “Breakthrough Propulsion Physics Program,” Cleveland, Ohio, Aug. 12–14, 1997, NASA/CP-1999-208694, pp. 72–82, January 1999.

  19. E. Schrödinger, Statistical Thermodynamics (Dover, New York, 1989). This edition is an unaltered republication of the second edition (1952) of the work first published in 1946 by the Cambridge University Press, with the subtile, A Course of Seminar Lectures Delivered in January–March 1944, At the School of Theoretical Physics, Dublin Institute for Advanced Studies.

    Google Scholar 

  20. D. C. Cole, Phys. Rev. D 35, 562 (1987).

    Google Scholar 

  21. T. H. Boyer, Phys. Rev. A 11, 1650 (1975).

    Google Scholar 

  22. L. I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968).

    Google Scholar 

  23. T. W. Marshall, Proc. R. Soc. London, Ser. A 276, 475 (1963).

    Google Scholar 

  24. H. M. Franca and T. W. Marshall, Phys. Rev. A 38, 3258 (1988).

    Google Scholar 

  25. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977), Vol. II, p. 1192.

    Google Scholar 

  26. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), Secs. 18.50–18.53 and 20.1–20.2.

    Google Scholar 

  27. R. C. Tolman, The Principles of Statistical Mechanics (Dover, New York, 1979, an unaltered republication of the work originally published in 1938 by Oxford University Press).

    Google Scholar 

  28. T. H. Boyer, Phys. Rev. 186, 1304 (1969).

    Google Scholar 

  29. A. M. Cetto and L. de la Peña, Found. Phys. 19, 419 (1989).

    Google Scholar 

  30. M. W. Zemansky and R. H. Dittman, Heat and Thermodynamics (McGraw-Hill, New York, 1981), p. 287.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D.C. Connections Between the Thermodynamics of Classical Electrodynamic Systems and Quantum Mechanical Systems for Quasielectrostatic Operations. Foundations of Physics 29, 1819–1847 (1999). https://doi.org/10.1023/A:1018838300141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018838300141

Keywords

Navigation