Skip to main content
Log in

High-Temperature Oxidation of Ti-48Al-2Nb-2Cr and Ti-25Al-10Nb-3V-1Mo

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The short-term oxidation behavior of aγ-TiAl alloy (Ti-48Al-2Nb-2Cr) was compared andcontrasted to that of anα2-Ti3Al base(Ti-25Al-19Nb-3V 1Mo) alloy. Oxidation ofTi-25Al-10Nb-3V-1Mo was found to occur at a moderate rate at 800°C, in aN2 + 20% O2 environment. A largeincrease in the oxidation rate occurred above thistemperature. This large weight increase was attributedto a breakdown in the protective oxide scale on the surface of theα2 intermetallic alloy, therebypermitting rapid diffusion of oxygen and nitrogen to thesurface of the intermetallic. The oxidation rate of thisalloy at 1200°C was not significantly higher thanthe oxidation rate at 1000°C. In contrast, theoxidation rate of Ti-48Al-2Nb-2Cr remained low up to1200°C. At this temperature, a significant increasein oxidation was observed and was attributed to acceleratedoxygen diffusion through the α2 phaseand increased solubility of oxygen in the gamma phase ofthe intermetallic microstructure. This weight increaseoccurred despite the fact that at 1200°C, theintegrity of the oxide layer formed on the surface ofthis alloy was maintained. The results of this studyillustrate the need for developing protectiveenvironmental coatings tailored to the individualintermetallic alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. A. Lipsitt, D. Shechtman, and R. E. Schafrik, Metall. Trans. 6A, 1991 (1975).

    Google Scholar 

  2. K. Kawabata, T. Kanai, and O. Izumi, Acta Metall. 33, 1355 (1985).

    Google Scholar 

  3. M. Yamaguchi and Y. Umakoshi, Progress in Materials Science, Vol. 34 (Permagnon Press, New York, 1990), p. 1.

    Google Scholar 

  4. D. P. Pope and C. T. Liu, in Superalloys, Supercomposites, and Superceramics, J. K. Tien and T. Caulfield, eds. (Academic Press, San Diego, 1989), p. 583.

    Google Scholar 

  5. N. S. Stoloff and R. G. Davies, in Progress in Materials Science, Vol. 13 (Permagnon Press, New York, 1966), p. 1.

    Google Scholar 

  6. G. H. Meier, Mater. Corros. 47, 595 (1996).

    Google Scholar 

  7. J. Rakowski, G. H. Meier, and R. A. Perkins, Microscopy of Oxidation Vol. 2 (Institute of Materials, London, 1993), p. 476.

    Google Scholar 

  8. T. A. Wallace, R. K. Clark, and K. E. Wiedermann, Oxid. Met. 42, 451 (1994).

    Google Scholar 

  9. G. H. Meier, F. S. Pettit, and S. Hu, J. Phys. IV C9, 395 (1993).

    Google Scholar 

  10. S. Becker, A. Rahmel, M. Schorr, and M. Schutze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  11. U. Figge, A. Elshner, N. Zheng, H. Shuster, and W. Quadakkers, J. Anal. Chem. 346, 75 (1993).

    Google Scholar 

  12. G. Welsch and A. I. Kahveci, in Oxidation of High Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Cleveland, Ohio, 1989), p. 207.

    Google Scholar 

  13. P. Kofstad, Dissolution of oxygen in metals and oxide scale formation, in High Temperature Corrosion (Elsevier Applied Science, Essex), p. 296.

  14. J. Stringer, Acta Metall. 8, 758 (1960).

    Google Scholar 

  15. A. Menand, A. Huguet, and A. Nerac-Partaix, Acta Mater. 44(12), 4729 (1996).

    Google Scholar 

  16. R. J. Hanrahan, Jr. and D. P. Butt, Oxid. Met. 47, 317 (1997).

    Google Scholar 

  17. R. Beye, M. Verwerft, J. T. M. De Hosson, and R. Gronsky, Acta Mater. 44(10), 4225 (1996).

    Google Scholar 

  18. M. P. Brady, W. J. Brindley, J. L. Smiatek, and I. E. Locci, JOM, November 1996, p. 46.

  19. T. K. Roy, R. Balasubramaniam, and A. Ghosh, Scripta Mater. 34(9), 1425 (1996).

    Google Scholar 

  20. S. Taniguchi and T. Shibata, Intermetallics 4, S85 (1996).

    Google Scholar 

  21. R. U. Vaidya, Y. Sin, K. N. Subramanian, A. K. Zurek, and R. Castro, in Advanced Materials and Processing (TMS, Pittsburgh, Pennsylvania, 1993), p. 67.

    Google Scholar 

  22. R. U. Vaidya, A. Wolfenden, A. K. Zurek, S. L. Hosman, R. Castro, and K. N. Subramanian, J. Adv. Mater. 26, 16 (1994).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidya, R.U., Park, Y.S., Zhe, J. et al. High-Temperature Oxidation of Ti-48Al-2Nb-2Cr and Ti-25Al-10Nb-3V-1Mo. Oxidation of Metals 50, 215–240 (1998). https://doi.org/10.1023/A:1018836304374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018836304374

Navigation