Skip to main content
Log in

The Use of Oxygen Isotopic Labeling to Understand Oxidation Mechanisms

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Isotopic labeling is a powerful tool to evaluatetransport and reaction mechanisms of oxidation. Theevaluation can answer the essential question inhigh-temperature oxidation: which is the dominatingmigrating species? Isotopic labeling can be used in twodifferent ways: analysis of the gas phase and analysisof the oxide formed. By using as-reported,depth-profiling data from the literature, the oxygenexchange was evaluated and compared with oxide growth.Gas-phase analysis was used to evaluate theoxygen-exchange reactions, O2 ↔7H2O, O2 ↔ O2, andO2 ↔ MexOy, inrelation to the oxidation of Si and Fe-Cr-Al alloys in ~10 mbar isotopically-labeledH2O/O2-gas mixtures at 900 to 950°C.The time dependence of the rate of the oxygen exchangewas used to explain the deviation from parabolicoxidation kinetics. The results of this study suggest that atomic oxygen is themigrating species during the oxidation of Si andalumina-forming alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988).

    Google Scholar 

  2. A. T. Fromhold, Jr, Theory of Metal Oxidation, Vol. 1: Fundamentals (North-Holland, Amsterdam, 1976).

    Google Scholar 

  3. F. P. Fehlner, Low-Temperature Oxidation (J. Wiley, New York, 1986).

    Google Scholar 

  4. H. J. Grabke, M. W. Brumm, and B. Wagemann, Mater. Corros. 47, 675 (1996).

    Google Scholar 

  5. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Google Scholar 

  6. F. Fehlner and M. J. Graham, Corrosion Mechanism in Theory and Practice, P. Marcus and J. Oudar, eds. (1995), chap. 4, pp. 123–141.

  7. Special Issue: In Honor of David L. Douglass on the Occasion of His Retirement, Oxid. Met. 44, (1995).

  8. T. Åkermark, Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 1996.

    Google Scholar 

  9. S. Rigo, Instabilities in Silicon Devices, G. Barbottin and A. Vapaille, eds. (North-Holland, Amsterdam, 1986), Vol. 1, pp. 8–100.

    Google Scholar 

  10. A. Atkins, Rev. Modern Phys. 57, 437 (1985).

    Google Scholar 

  11. Q. Lu, G. Hultquist, K. L. Tan, and T. Åkermark, Surface Interface Anal. 20, 645 (1993).

    Google Scholar 

  12. Q. Lu, Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 1994.

    Google Scholar 

  13. T. Åkermark and G. Hultquist, J. Electrochem. Soc. 144, 1456 (1997).

    Google Scholar 

  14. T. Åkermark and G. Hultquist, Oxid. Met. 47, 117 (1997).

    Google Scholar 

  15. T. Åkermark, G. Hultquist, and L. Gråsjö, J. Trace Microprobe Technol. 14, 377 (1996).

    Google Scholar 

  16. G. Hultquist, L. Gråsjö, Q. Lu, and T. Åkermark, Corros. Sci. 36, 1459 (19).

  17. L. Gråsjö, Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 1994.

    Google Scholar 

  18. C.-J. Han and C. R. Helms, J. Electrochem. Soc. 135, 1824 (1988).

    Google Scholar 

  19. J. D. Cawley, J. W. Halloran, and A. R. Cooper, Oxid. Met. 28, 1 (1987).

    Google Scholar 

  20. J. A. Costello and R. E. Tressler, J. Electrochem. Soc. 131, 1944 (1984).

    Google Scholar 

  21. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxid. Met. 32, 67 (1989).

    Google Scholar 

  22. H. Beske, W. J Quadakkers, H. Holzbrecher, H. Schuster, and H. Nickel, Mikrochim. Acta II, 109 (1990).

  23. C. Wagner, Z. Phys. Chem. B21, 25 (1933).

    Google Scholar 

  24. G. K. Boreskov, Catalysis Science and Technology, eds. 1982) J. R. Anderson and M. Boundart, chap. 2, pp. 39–137.

  25. G. K. Boreskov and V. S. Muzykantov, Ann. N.Y. Acad. Sci. 213, 137 (1973).

    Google Scholar 

  26. E. R. S. Winter, J. Chem. Soc. A, pp. 2889–2902 (1968).

  27. J. Nováková, Catalysis Rev. J. 4, 77 (1970).

    Google Scholar 

  28. P. W. Atkins, Physical Chemistry, 4th ed. (1990), (a) Chap. 26, pp. 777–813; (b) Chap. 28, pp. 884–902.

  29. Yu. M. Mishin and G. Borchardt, J. Phys. 3, 863 (1993).

    Google Scholar 

  30. E. A. Gulbransen, J. Vacuum Sci. Technol. 17, 109 (1980).

    Google Scholar 

  31. S.-C. Kao and R. H. Doremus, J. Electrochem. Soc. 141, 1832 (1994).

    Google Scholar 

  32. T. Albers, M. Neumann, D. Lipinsky, and A. Benninghoven, Appl. Surface Sci. 70/71, 49 (1993).

    Google Scholar 

  33. D. E. Sykes and A. Chew, Surface Interface Anal. 21, 231 (1994).

    Google Scholar 

  34. L. C. Feldman, in Ion Spectroscopies for Surface Analysis, A. W. Czanderna and D. M. Hercules, eds. (Plenum Press, New York, 1991), chap. 2, p. 358.

    Google Scholar 

  35. F. Rochet, B. Agius, and S. Rigo, J. Electrochem. Soc. 131, 914 (1984).

    Google Scholar 

  36. E. A. Irene, CRC Crit. Rev. Solid State Mater. Sci. 14, 175 (1988).

    Google Scholar 

  37. H. Z. Massoud, J. D. Plummer, and E. I. Irene, J. Electrochem. Soc. 132, 2685 (1985).

    Google Scholar 

  38. N. Cabrera and N. F. Mott, Rept. Progr. Phys. 12, 163 (1949).

    Google Scholar 

  39. R. J. Hussey and M. J. Graham, Oxid. Met. 45, 349 (1996).

    Google Scholar 

  40. J. Jedlinski and G. Borchardt, Oxid. Met. 36, 317 (1991).

    Google Scholar 

  41. D. Delaunay and A. M. Huntz, J. Mater. Sci. 17, 2027 (1982).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akermark, T. The Use of Oxygen Isotopic Labeling to Understand Oxidation Mechanisms. Oxidation of Metals 50, 167–188 (1998). https://doi.org/10.1023/A:1018832103466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018832103466

Navigation