Skip to main content
Log in

The Weyl-Cartan Space Problem in Purely Affine Theory

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

According to Poincaré, only the “epistemological sum of geometry and physics is measurable”. Of course, there are requirements of measurement to be imposed on geometry because otherwise the theory resting on this geometry cannot be physically interpreted. In particular, the Weyl-Cartan space problem must be solved, i.e., it must be guaranteed that the comparison of distances is compatible with the Levi-Civita transport. In the present paper, we discuss these requirements of measurement and show that in the (purely affine) Einstein-Schrödinger unified field theory the solution of the Weyl-Cartan space problem simultaneously determines the matter via Einstein's equations. Here the affine field Γi kl represents Poincaré's sum, and the solution of the space problem means its splitting in a metrical space and in matter fields, where the latter are given by the torsion tensor Γi [kl].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Poincaré, H. (1902). La Science et l'Hypothèse (Flammarion, Paris).

    Google Scholar 

  2. Einstein, A. (1922). Geometrie und Erfahrung [Geometry and Experience] (Springer-Verlag, Berlin).

    Google Scholar 

  3. Einstein, A. (1955). The Meaning of Relativity (5th ed., Princeton University Press, Princeton).

    Google Scholar 

  4. Schrödinger, E. (1950). Space-Time Structure (Cambridge University Press, Cambridge).

    Google Scholar 

  5. Treder, H.-J. (1994). Astron. Nachr. 315, 1.

    Google Scholar 

  6. Schouten, J. A. (1954). Ricci-Calculus (Springer-Verlag, Berlin).

    Google Scholar 

  7. Einstein, A. (1921). Sitzungsber. Preuss. Akad. Wiss., 261.

  8. Weyl, H. (1918). Sitzungsber. Preuss. Akad. Wiss., 465.

  9. Weyl, H. (1923). Mathematische Analyse des Raumproblems [The Mathematical Analysis of the Space Problem] (Springer-Verlag, Berlin).

    Google Scholar 

  10. Treder, H.-J. (1971). Gen. Rel. Grav. 2, 313; Treder, H.-J., and von Borzeszkowski, H.-H. (1973). Int. J. Theor. Phys. 8, 319.

    Google Scholar 

  11. Levi-Civita, T. (1926). The Absolute Differential Calculus (Blackie, London & Glasgow), reprinted 1950.

    Google Scholar 

  12. Eisenhart, L. P. (1926). Non-Riemannian Geometry (AMS, New York).

    Google Scholar 

  13. Weyl, H. (1923). Math. Zeitschr. 12, 114.

    Google Scholar 

  14. Moffat, J. W. (1991). In Gravitation (Proc. Banff Summer Institute), R. B. Mann and P. Wesson, eds. (World Scientific, Singapore). For recent discussions, cf. also Cornish, N. J. Moffat, J. W., and Tatarski, D. C. (1995). Gen. Rel. Grav. 27, 933, and the literature cited therein.

    Google Scholar 

  15. Hehl, F. W., McCrea, J. D., Mielke, E. W., Ne'eman, Y. (1995). Phys. Rep. 258, 1.

    Google Scholar 

  16. von Borzeszkowski, H.-H., and Treder, H.-J. (1996). In Quantum Gravity (Proc. 14th Course of Int. School of Cosmology and Gravitation, Erice, May 1995), P. G. Bergmann, V. de Sabbata, and H.-J. Treder, eds. (World Scientific, Singapore).

    Google Scholar 

  17. Schrödinger, E. (1945–1947). Proc. Roy. Irish Acad. 51, 163, 205; (1948–1949). ibid. 52, 1.

    Google Scholar 

  18. von Borzeszkowski, H.-H., and Treder, H.-J. (1996). Gen. Rel. Grav. 28, 1.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Borzeszkowski, HH., Treder, HJ. The Weyl-Cartan Space Problem in Purely Affine Theory. General Relativity and Gravitation 29, 455–466 (1997). https://doi.org/10.1023/A:1018830631884

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018830631884

Navigation