Skip to main content
Log in

A Closed Contour of Integration in Regge Calculus

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The analytic structure of the Regge action on a cone in d dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Regge, T. (1961). Nuovo Cimento19, 558.

    Google Scholar 

  2. Wheeler, J. A. (1964). In Relativity, Groups and Topology, C. DeWitt and B. DeWitt, eds. (Gordon and Breach, New York).

    Google Scholar 

  3. Hartle, J. B. (1985). J. Math. Phys.26, 804.

    Google Scholar 

  4. Williams, R. M., and Tuckey, P. A. (1992). Class. Quantum Grav.9, 1409.

    Google Scholar 

  5. Hamber, H. W. (1986). In Critical Phenomena, Random Systems, Gauge Theories (Proc. Les Houches Summer School 1984), K. Osterwalder and R. Stora, eds. (Amsterdam, North-Holland).

    Google Scholar 

  6. Gibbons, G. W., Hawking, S.W., and Perry, M. J. (1978). Nucl. Phys. B138, 141.

    Google Scholar 

  7. Hartle, J. B. (1989). J. Math. Phys.30, 452.

    Google Scholar 

  8. Hartle, J. B., and Hawking, S. W. (1983). Phys. Rev. D28, 2960.

    Google Scholar 

  9. Halliwell, J. J., and Hartle, J. B. (1990). Phys. Rev. D41, 1815.

    Google Scholar 

  10. Birmingham, D. (1995). Phys. Rev. D52, 5760, gr-qc/9504005.

    Google Scholar 

  11. Birmingham, D. (1996). Gen. Rel. Grav.28, 87.

    Google Scholar 

  12. Hartle, J. B., and Sorkin, R. (1981). Gen. Rel. Grav.13, 541.

    Google Scholar 

  13. Munkres, J. (1984). Elements of Algebraic Topology(Addison-Wesley, Menlo Park).

    Google Scholar 

  14. Schleich, K., and Witt, D. M. (1993). Nucl. Phys. B402, 469.

    Google Scholar 

  15. Halliwell, J. J., and Louko, J. (1990). Phys. Rev. D42, 3997.

    Google Scholar 

  16. Rourke, C. P., and Sanderson, B. J. (1972). Introduction to Piecewise Linear Topology(Springer-Verlag, Berlin).

    Google Scholar 

  17. Kühnel, W. (1990). In Advances in Differential Geometry and Topology, F. Tricerri, ed. (World Scientific, Singapore).

    Google Scholar 

  18. Brehm, U., and Świątkowski, J. (1993). “Triangulations of Lens Spaces with Few Simplices”, Preprint, T.U. Berlin.

  19. Banchoff, T., and Kühnel, W. (1992). Geometriae Dedicata44, 313.

    Google Scholar 

  20. Kühnel, W., and Banchoff, T. (1983). Math. Intelligencer5, 11.

    Google Scholar 

  21. Halliwell, J. J., and Louko, J. (1989) Phys. Rev. D39, 2206.

    Google Scholar 

  22. Halliwell, J. J., and Louko, J. (1989) Phys. Rev. D40, 1868.

    Google Scholar 

  23. Halliwell, J. J., and Myers, R. C. (1989). Phys. Rev. D40, 4011.

    Google Scholar 

  24. Louko, J., and Tuckey, P. A. (1992). Class. Quantum Grav.9, 41.

    Google Scholar 

  25. Furihata, Y. (1996). Phys. Rev. D53, 6875.

    Google Scholar 

  26. Pachner, U. (1978). Arch. Math.30, 89; (1991). Europ. J. Combinatorics12, 129.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, D. A Closed Contour of Integration in Regge Calculus. General Relativity and Gravitation 30, 83–103 (1998). https://doi.org/10.1023/A:1018825017250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018825017250

Navigation