Abstract
The question of the cause of inertial reaction forces and the validity of “Mach's principle” are investigated. A recent claim that the cause of inertial reaction forces can be attributed to an interaction of the electrical charge of elementary particles with the hypothetical quantum mechanical “zero-point” fluctuation electromagnetic field is shown to be untenable. It fails to correspond to reality because the coupling of electric charge to the electromagnetic field cannot be made to mimic plausibly the universal coupling of gravity and inertia to the stress-energy-momentum (i.e., matter) tensor. The gravitational explanation of the origin of inertial forces is then briefly laid out, and various important features of it explored in the last half-century are addressed.
This is a preview of subscription content, access via your institution.
REFERENCES
J. B. Barbour, in Modern Cosmology in Retrospect, B. Bertotti et al., eds. (Cambridge University Press, Cambridge, 1990), pp. 47–66.
J. B. Barbour and H. Pfister, Mach's Principle: From Newton's Bucket to Quantum Gravity, Vol. 6 of Einstein Studies (Birkhäuser, Boston, 1995).
J. Bernstein, An Introduction to Cosmology (Prentice-Hall, Englewood Cliffs, NJ, 1995).
T. H. Boyer, Phys. Rev. D 29, 1089-1098 (1984).
C. H. Brans, Phys. Rev. 125, 388–396 (1962).
S. Chen, A. Maksimchuk, and D. Umstadter, Nature 396, 653–655 (1998).
M. Chown, New Sci. 3, 29–32 (1999).
I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira, and J. Perez-Mercader, Science 279, 2100–2103 (1998).
G. Cocconi and E. E. Salpeter, Nuovo Cimento 10, 646–651 (1958).
J. G. Cramer, Rev. Mod. Phys. 58, 647–687 (1986).
R. H. Dicke, The Theoretical Significance of Experimental Relativity, Documents on Modern Physics Series (Gordon & Breach, New York, 1964), esp. pp. 14–22, 31-34, 72-77.
A. Einstein, The Meaning of Relativity, 5th edn. (Princeton University Press, Princeton, NJ, 1956), pp. 99–108.
G. F. R. Ellis and D. W. Sciama, in General Relativity: Papers in Honour of J. L. Synge, O'Raifeartaigh, ed. (Clarendon, Oxford), pp. 35-59.
R. C. Gilman, Phys. Rev. D 2, 1400–1410 (1970).
B. Haisch and A. Rueda, J. Sci. Explor. 11, 473–485 (1997).
a. B. Haisch, A. Rueda, and H. Puthoff, Phys. Rev. A 49, 678–694 (1994). b. Presentation at the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA paper 98-3143 (1998).
C. Hoefer, in Ref. 2, pp. 67-90.
R. Matthews, Science 263, 612–613 (1994).
P. Milonni, The Quantum Vacuum (Academic Press, New York, 1993), passim.
P. C. Peters, Am. J. Phys. 49, 564–569 (1981).
W. Rindler, Introduction to Special Relativity, 2nd edn. (Clarendon, Oxford, 1991).
a. A. Rueda and B. Haisch, Phys. Lett. A 240, 115–126 (1998). b. Found. Phys. 28, 1057 (1998).
a. D. W. Sciama, Mon. Not. Roy. Astron. Soc. 113, 34–42 (1953). b. Rev. Mod. Phys. 36, 463-469 (1964).
D. W. Sciama, P. C. Waylen, and R. C. Gilman, Phys. Rev. 187, 1762–1766 (1969).
H.-J. Treder et al., Fundamental Principles of General Relativity Theories (Plenum, New York, 1980).
J. F. Woodward, Found. Phys. Lett. 8, 1–39 (1995); 9, 1-23 (1996).
Rights and permissions
About this article
Cite this article
Woodward, J.F., Mahood, T. What is the Cause of Inertia?. Foundations of Physics 29, 899–930 (1999). https://doi.org/10.1023/A:1018821328482
Issue Date:
DOI: https://doi.org/10.1023/A:1018821328482