Foundations of Physics

, Volume 29, Issue 4, pp 631–643 | Cite as

A Foundational Principle for Quantum Mechanics

  • Anton Zeilinger
Article

Abstract

In contrast to the theories of relativity, quantum mechanics is not yet based on a generally accepted conceptual foundation. It is proposed here that the missing principle may be identified through the observation that all knowledge in physics has to be expressed in propositions and that therefore the most elementary system represents the truth value of one proposition, i.e., it carries just one bit of information. Therefore an elementary system can only give a definite result in one specific measurement. The irreducible randomness in other measurements is then a necessary consequence. For composite systems entanglement results if all possible information is exhausted in specifying joint properties of the constituents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. D. Mermin, Phys. Today 38 (4), 38 (1985).Google Scholar
  2. 2.
    A. Einstein, “Autobiographical Notes,” in Albert Einstein: Philosopher-Scientist, P. A. Schilpp, ed. (Open Court, Evanston, IL, 1949), Vol. 1, p. 65.Google Scholar
  3. 3.
    A. Zeilinger, “On the interpretation and philosophical foundation of quantum mechanics,” in Vastakohtien todellisuus (Festschrift for K. V. Laurikainen), U. Ketvel et al., eds. ( Helsinki University Press, Helsinki, 1996). A copy can be found at our website www.quantum.at.Google Scholar
  4. 4.
    G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986); P. Pearle, Phys.Rev. A 39, 2277 (1989).Google Scholar
  5. 5.
    N. Bohr, Phys. Rev. 48, 696 (1935).Google Scholar
  6. 6.
    H. Everett III, Rev. Mod. Phys. 29, 454 (1957).Google Scholar
  7. 7.
    J. C. Cramer, Rev. Mod. Phys. 58, 647 (1986).Google Scholar
  8. 8.
    D. Bohm, Phys. Rev. 85, 166 (1952).Google Scholar
  9. 9.
    N. D. Mermin, Am. J. Phys. 66, 753 (1998).Google Scholar
  10. 10.
    A. Zeilinger, Phil. Trans. R. Soc. Lond. A 355, 2401 (1997).Google Scholar
  11. 11.
    A. Einstein, Z. Phys. 18, 121 (1917).Google Scholar
  12. 12.
    J. Bell, Phys. World 3, 33 (1990).Google Scholar
  13. 13.
    C.Brukner and A. Zeilinger, “Malus' law and quantum information,” Acta Phys. Slovaka ( in press).Google Scholar
  14. 14.
    A. Petersen, “The philosophy of Niels Bohr,” in Niels Bohr, A Centenary Volume, A. P. French and P. I. Kennedy, eds. (Harvard University Press, Cambridge, MA, 1985), p. 299.Google Scholar
  15. 15.
    A. Zeilinger, Phys. Scripta T 76, 203 (1998).Google Scholar
  16. 16.
    S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev. Lett. 68, 3259 (1992).Google Scholar
  17. 17.
    C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W. K. Wootters, Phys.Rev. Lett. 70, 1895 (1993); D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997).Google Scholar
  18. 18.
    D. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell's theorem,” in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989), p. 69.Google Scholar
  19. 19.
    N. D. Mermin, Phys. Today 43 (6), 9 (1990).Google Scholar
  20. 20.
    J. A. Wheeler, “Law without law,” in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, NJ, 1983), p. 182.Google Scholar
  21. 21.
    C. Brukner and A. Zeilinger, “A quantum information invariant,” in Experimental and Epistemological Foundations of Quantum Mechanics, D. M. Greenberger, W. Reiter, and A. Zeilinger, eds. (Vienna Circle Yearbook, 1999) (Kluwer Academic, Dordrecht, 1999).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Anton Zeilinger

There are no affiliations available

Personalised recommendations