Skip to main content
Log in

Hot-Corrosion Behavior of TiAl-Base Intermetallics in Molten Salts

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The hot-corrosion behavior of Ti-50Al,Ti-48Al-2Cr-2Nb, and Ti-50Al10Cr alloys was investigatedin (Na, K)2SO4 andNa2SO4 + NaCl melts. TiAlintermetallics showed much better hot-corrosionresistance in (Na, K)2SO4 at900°C than the Ni-base superalloy K38G. Two types ofcorrosion products formed on Ti-50Al: some areas werecovered with a continuous Al2O3 scale, whereas otherareas formed a mixed Al2O3 +TiO2 scale; TiS existed at the scale-alloyinterface. A mixed Al2O3 +TiO2 scale formed on Ti-48Al-2Cr 2Nb, and nosulfide was found beneath the scale. An adherentAl2O3 scale, however, formed onTi-50Al-10Cr, which provided excellent hot-corrosionresistance. All three alloys suffered severe hotcorrosion in Na2SO4 + NaCl meltsat 850°C. A mixed Al2O3 +TiO2 scale formed on all three alloys andmany voids and pits existed in the scale-alloy interface. Thehot-corrosion mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. W. Kim, J. Met. 42, 24 (1989).

    Google Scholar 

  2. Y. W. Kim, J. Met. 47, 38 (1995).

    Google Scholar 

  3. C. Austin, in Gamma Titanium Aluminides, Y. W. Kim, R. Wagner, and M. Yamaguchi, eds. (TMS, PA, 1995), p. 21.

    Google Scholar 

  4. S. Becker, A. Rahmel, M. Schorr, and M. Schutze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  5. K. L. Luthra, Oxid. Met. 36, 475 (1991).

    Google Scholar 

  6. S. Taniguchi, MRS Bull. p. 31 (1994).

  7. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, J. Met. 48, 46 (1996).

    Google Scholar 

  8. F. Wang and Z. Tang, Chinese J. Mater. Res., accepted for publication.

  9. R. A. Perkins, K. T. Chiang, and G. H. Meier, Scripta Metall. 21, 1505 (1987).

    Google Scholar 

  10. M. P. Brady, J. L. Smialek, and W. J. Brindley, submitted to U.S. patent office (1996).

  11. F. Wang, Z. Tang, and W. Wu, Oxid. Met. 48, 381 (1997).

    Google Scholar 

  12. Z. Tang, F. Wang, and W. Wu, Oxid. Met. 48, 511 (1997).

    Google Scholar 

  13. Z. Yao and M. Marek, Mater. Sci. Eng. A192/193, 994 (1995).

    Google Scholar 

  14. J. R. Nicholls, J. Leggett, and P. Andrews, Mater. Corros. 48, 56 (1997).

    Google Scholar 

  15. M. Yoshihara, R. Tanaka, T. Suzuki, and M. Shimizu, in High Temperature Ordered Intermetallics Alloys, Vol. IV, L. A. Johnson and J. O. Stiagler, eds. (MRS, Pittsburgh, PA, 1991), p. 975.

    Google Scholar 

  16. J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schman, and M. Ruhle, Scripta Met. Mater. 33, 997 (1995).

    Google Scholar 

  17. N. S. Choudhury, H. C. Graham, and W. Hinze, Properties of High Temperature Alloys, Z. A. Fouroulis and F. S. Pettit, eds. (Electrochemical Society, Pennington, NJ, 1976), p. 688.

    Google Scholar 

  18. Y. Zhang, J. Chinese Soc. Corros. Protect. 12, 1 (1992).

    Google Scholar 

  19. J. A. Goebel, F. S. Pettit, and G. W. Goward, Met. Trans. 4, 265 (1973).

    Google Scholar 

  20. T. Yoshioka and T. Narita, Corros. Eng. 45, 749 (1996).

    Google Scholar 

  21. M. McNallan and F. H. Stott, Oxid. Met. 45, 559 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Wang, F. & Wu, W. Hot-Corrosion Behavior of TiAl-Base Intermetallics in Molten Salts. Oxidation of Metals 51, 235–250 (1999). https://doi.org/10.1023/A:1018818622547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018818622547

Navigation