Skip to main content
Log in

Cell Loading with Laser-Generated Stress Waves: The Role of the Stress Gradient

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the dependence of the permeabilzation of the plasma membrane on the characteristics of laser-generated stress waves.

Methods. Laser pulses can generate stress waves by ablation. Depending on the laser wavelength, fluence, and target material, stress waves of different characteristics (rise time, peak stress) can be generated. Human red blood cells were subjected to stress waves and the permeability changes were measured by uptake of extracellular dye molecules.

Results. A fast rise time (high stress gradient) of the stress wave was required for the permeabilization of the plasma membrane. While the membrane was permeable, the cells could rapidly uptake molecules from the surrounding medium by diffusion.

Conclusions. Stress waves provide a potentially powerful tool for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Suslick (ed). Ultrasound: Its chemical, physical and biological effects. VCH, New York, 1988.

    Google Scholar 

  2. A. J. Coleman and J. E. Saunders. A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31:75–89 (1993).

    Google Scholar 

  3. A. G. Doukas and T. J. Flotte. Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med. Biol. 22:151–164 (1996).

    Google Scholar 

  4. M. W. Morton, D. L. Miller, and A. A. Brayman. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 22:1131–1154 (1996).

    Google Scholar 

  5. R. P. Holmes, L. I. Yeaman, R. G. Taylor, and D. L. McCullogh. Altered neutrophil permeability following shock wave exposure in vitro. J. Urol. 147:733–737 (1992).

    Google Scholar 

  6. A. G. Doukas, D. J. McAuliffe, and T. J. Flotte. Biological effects of laser-induced shock waves: Structural and functional cell damage in vitro. Ultasound Med. Biol. 19:137–146 (1993).

    Google Scholar 

  7. J. Liu, T. N. Lewis, and M. R. Prausnitz. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res. 15:918–924 (1998).

    Google Scholar 

  8. S. Gambilher, M. Delius, and J. W. Ellwart. Transient increase in membrane permeability of L1210 cells upon exposure to lithotripter shock waves in vitro. J. Membr. Biol. 141:267–275 (1994).

    Google Scholar 

  9. S. Lee, T. Anderson, H. Zhang, T. J. Flotte, and A. G. Doukas. Alteration of cell membrane by stress waves in vitro. Ultrasound Med. Biol. 22:1285–1293 (1996).

    Google Scholar 

  10. H. J. Kim, J. F. Greenleaf, R. R. Kinnick, J. T. Bronk, and M. E. Bolander. Ultrasound-mediated transfection of mammalian cells. Human Gene Therapy 7:1339–1346 (1996).

    Google Scholar 

  11. D. J. McAuliffe, S. Lee, T. J. Flotte, and A. G. Doukas. Stresswave-assisted transport through the plasma membrane in vitro. Lasers Surg. Med. 20:216–222 (1997).

    Google Scholar 

  12. S. Bao, B. D. Thrall, and D. Miller. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23:953–959 (1997).

    Google Scholar 

  13. J. A. Wyber, J. Andrews, and A. D'Emanuele. The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm. Res. 14:750–756 (1997).

    Google Scholar 

  14. A. G. Doukas, D. J. McAuliffe, S. Lee, V. Venugopalan, and T. J. Flotte. Physical factors involved in stress-wave-induced cell injury. The effect of stress gradient. Ultrasound Med. Biol. 21:961–967 (1995).

    Google Scholar 

  15. S. Lee, D. J. McAuliffe, H. Zhang, Z. Xu, J. Taitelbaum, T. J. Flotte, and A. G. Doukas. Stress-wave-induced membrane permeation of red blood cells is facilitated by aquaporins. Ultrasound Med. Biol. 23:1089–1094 (1997).

    Google Scholar 

  16. M. Tonetti and A. De Flora. Carrier erythrocytes clinical pharmacokinetic considerations. Clin. Pharmacokinet. 25:351–357 (1993).

    Google Scholar 

  17. D. A. Hutchins. Ultrasonic generation by pulsed lasers. Physical Acoustics 18:21–123 (1988).

    Google Scholar 

  18. C. R. Phipps, Jr., T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King. Impulse coupling targets in vacuum by KrF, HF, and CO2 single pulse laser. J. Appl. Phys. 64:1083–1096 (1988).

    Google Scholar 

  19. A. D. Zweig, V. Venugopalan, and T. F. Deutsch. Stress generated in polyimide by excimer-laser radiation. J. Appl. Phys. 74:4181–4188 (1993).

    Google Scholar 

  20. R. Srinivasan. Ablation of polymers and biological tissue by ultraviolet lasers. Science 234:559–565 (1986).

    Google Scholar 

  21. A. N. Perri. Theory of momentum transfer to a surface with a high-power laser. Phys. Fluids 16:1435–1440 (1973).

    Google Scholar 

  22. T. J. Flotte, T. Anderson, D. J. McAuliffe, T. Hasan, and A. G. Doukas. Laser-induced enhancement of cytotoxicity: A new approach to cancer therapy. In Laser-tissue Interactions IV, S. L. Jacques, (ed), Proceedings SPIE, 1882:122–129, The international Society for Optical Engineering, Bellingham, WA, 1993.

    Google Scholar 

  23. M. Delius. Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones. Ultrasound Med. Biol. 23:611–617 (1997).

    Google Scholar 

  24. P. L. Blackshear and G. L. Blackshear. Mechanical hemolysis, In Handbook of Bioengineering. R. Skalak, and S. Chien (eds), McGraw-Hill Book Company, New York, 1976, pp. 15.1–15.19.

    Google Scholar 

  25. L. B. Everett, J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stresses. Biophys. J. 12:257–273 (1972).

    Google Scholar 

  26. S. Lee, D. J. McAuliffe, T. J. Flotte, N. Kollias, and A. G. Doukas. Photomechanical transcutaneous molecular delivery. J. Invest. Dermatol. 111:925–929 (1998).

    Google Scholar 

  27. K. Teshima, T. Ohshima, S. Tanaba, and T. Nagai. Biomechanical effects of shock waves on Escherichia coli and λphage DNA. Shock Waves 4:293–297 (1995)

    Google Scholar 

  28. T. Kodama, H. Venohara, and K. Takayama. Innovative technology for tissue disruption by explosive-induced shock waves. Ultrasound Med. Biol. 24:1459–1466 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos G. Doukas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulholland, S.E., Lee, S., McAuliffe, D.J. et al. Cell Loading with Laser-Generated Stress Waves: The Role of the Stress Gradient. Pharm Res 16, 514–518 (1999). https://doi.org/10.1023/A:1018814911497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018814911497

Navigation