Skip to main content
Log in

Pre-Maxwell Electrodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the context of a covariant mechanics with Poincaré-invariant evolution parameter τ, Sa'ad, Horwitz, and Arshansky have argued that for the electromagnetic interaction to be well posed, the local gauge function of the field should include dependence on τ, as well as on the spacetime coordinates. This requirement of full gauge covariance leads to a theory of five τ-dependent gauge compensation fields, which differs in significant aspects from conventional electrodynamics, but whose zero modes coincide with the Maxwell theory. The pre-Maxwell fields may exchange mass with charged particles, permitting pair annihilation even at the classical level. The total mass-energy-momentum tensor of the fields and particles is conserved. The Green's functions for the fields provide spacelike and timelike support for correlations, as well as lightlike propagation. A τ-integration of the fields—singling out the massless photons—recovers the standard Maxwell theory, which then has the character of an equilibrium limit of the underlying microscopic dynamics. The pre-Maxwell theory also turns out to be the solution of the inverse problem in variational mechanics: it is shown to be the most general local gauge theory consistent with unconstrained commutation relations in four dimensions. Posed in this framework, the extension to n-dimensions, curved background space, and non-abelian gauge symmetry becomes straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Feynman, Phys. Rev. 80, 4404 (1950); Rev. Mod. Phys. 20, 367 (1948).

    Google Scholar 

  2. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Google Scholar 

  3. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); 14, 588 (1941).

    Google Scholar 

  4. D. Saad, L. P. Horwitz, and R. I. Arshansky, Found. of Phys. 19, 1126 (1989).

    Google Scholar 

  5. A. Kyprianidis, Phys. Rep. 155, 1 (1987).

    Google Scholar 

  6. L. P. Horwitz and Y. Lavie, Phys. Rev. D 26, 819 (1982). R. I. Arshansky and L. P. Horwitz, J. Math. Phys. 30, 213 (1989); Phys. Lett. A 131; 222 (1988).

    Google Scholar 

  7. R. I. Arshansky and L. P. Horwitz, Phys. Lett. A 30, 66 (1989).

    Google Scholar 

  8. R. Arshansky and L. P. Horwitz, J. Math. Phys. 30, 380 (1989).

    Google Scholar 

  9. M. C. Land, R. Arshansky and L. P. Horwitz, Found. Phys. 24, 563 (1994).

    Google Scholar 

  10. M. C. Land and L. P. Horwitz. J. Phys. A: Math. Gen. 28, 3289 (1995).

    Google Scholar 

  11. M. C. Land and L. P. Horwitz, Found. Phys. Lett. 4; 61 (1991).

    Google Scholar 

  12. L. P. Horwitz and C. Piron, Helv. Phys. Acta 48, 316 (1973).

    Google Scholar 

  13. M. C. Land and L. P. Horwitz, Found. Phys. 21, 299 (1991).

    Google Scholar 

  14. S. A. Hojman and L. C. Shepley, J. Math. Phys. 32, 142 (1991).

    Google Scholar 

  15. M. C. Land, N. Shnerb, L. P. Horwitz, J. Math. Phys. 36, 3263 (1995).

    Google Scholar 

  16. S. K. Wong, Nuovo Cimento A 65, 689 (1970).

    Google Scholar 

  17. R. Arshansky, L. P. Horwitz and Y. Lavie, Found. Phys. 13, 1167 (1983).

    Google Scholar 

  18. N. Shnerb and L. P. Horwitz, Phys. Rev. A 48, 4068 (1993).

    Google Scholar 

  19. M. C. Land, Found. Phys. 27, 299 (1997).

    Google Scholar 

  20. J. Frastai and L. P. Horwitz, TAUP-2138-94.

  21. W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Land, M.C. Pre-Maxwell Electrodynamics. Foundations of Physics 28, 1479–1487 (1998). https://doi.org/10.1023/A:1018813429428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018813429428

Keywords

Navigation