Skip to main content
Log in

Electrical Conductivity of Rocks under Shock Compression

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The electrical conductivity of silicate rocks (quartzite, granite, and dry and wet tuffs) under single shock–wave loading is measured. It is shown that even at a shock–wave pressure of 20 GPa, the conductivity of rocks changes by several orders of magnitude compared to the initial value (10−9 — 10−12 Ω−1 · m−1 for dry rocks) and reaches 0.01 Ω−1 · m−1 for quartzite and granite and 0.1 — 1.0 Ω−1 · m−1 for tuff. As the shock–wave amplitude increases from 20 to 60 GPa, the electrical conductivity increases by further one or two orders of magnitude. The experiments with rocks did not reveal a drastic change in electrical conductivity similar to the that observed for silicon dioxide (fused quartz) at a pressure of about 40 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. A. Sadovskii, “Topical problems of geophysics in the complex of Earth sciences” Vestn. Akad. Nauk SSSR, No. 1, 60-63 (1968).

    Google Scholar 

  2. É. I. Parkhomenko and A. T. Bondarenko, Electrical Conductivity of Rocks at High Pressures and Temperatures [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  3. K. I. Kondo, A. Sawaoka, and T. J. Ahrens, “Electrical measurements on fused quartz under shock compression” J. Appl. Phys., 52, No. 8, 5084-5089 (1981).

    Google Scholar 

  4. Q. Williams, E. Knittle, R. Reichlin, et al., “Structural and electronic properties of Fe 2SiO4-fayalite at ultrahigh pressures: Amorphization and gap closure” J. Geophys. Res., 95, No. B13, 21.549-21.563 (1990).

    Google Scholar 

  5. T. Mashimo, K. I. Kondo, A. Sawaoka, et al., “Electrical conductivity measurement of fayalite under shock compression up to 56 GPa” J. Geophys. Res., 85, 1876-1881 (1980).

    Google Scholar 

  6. A. A. Brish, M. S. Tarasov, and V. A. Tsukerman, “Electrical conductivity of explosion products of condensed explosives” Zh. Éksp. Teor. Fiz., 37, No. 6, 1543-1550 (1959).

    Google Scholar 

  7. K. Kani, T. Yamada, and M. Abe, “Hugoniot and electric resistivity measurement on amorphous Se” in: Proc. of the 4th Amer. Phys. Soc. Conf. on Shock Waves in Condensed Matter (Spokane, Washington, July 22-25, 1985), Plenum Press, New York (1986), pp. 477-482.

    Google Scholar 

  8. A. C. Mitchell and R. N. Keeler, “Technique for accurate measurement of the electrical conductivity of shocked fluids” Rev. Sci. Instrum., 39, No. 4, 513-522 (1968).

    Google Scholar 

  9. Yu. N. Zhugin, K. K. Krupnikov, N. A. Ovechkin, et al., “Some features of the dynamic compressibility of quartz” Fiz. Zemli, No. 10, 16-21 (1994).

    Google Scholar 

  10. J. Wackerle, “Shock-wave compression of quartz” J. Appl. Phys., 33, No. 2, 922-937 (1962).

    Google Scholar 

  11. S. P. Marsh (ed.), LASL Shock Hugoniot Data, Univ. California Press, Berkely, CA (1980).

    Google Scholar 

  12. A. N. Dremin and I. A. Karpukhin, “Method for determining the shock adiabats of dispersed materials” Prikl. Mekh. Tekh. Fiz., No. 3, 184-189 (1960).

    Google Scholar 

  13. I. I. Sharipdhzanov, L. V. Al'tshuler, and S. E. Brusnikin, “Anomalies of the shock and isentropic compressibility of water” Fiz. Goreniya Vzryva, 19, No. 5, 149-153 (1983).

    Google Scholar 

  14. T. J. Ahrens and J. T. Rosenberg, “Shock metamorphism: Experiments on quartz and plagioclase” in: Shock Metamorphism of Natural Materials, Mono Book Co., Baltimore (1968), pp. 59-81.

    Google Scholar 

  15. V. I. Postnov, S. S. Nabatov, and V. V. Yuakishev, “Investigation of the behavior of fused quartz behind the shock-wave front by measuring electrical conductivity” in: High-Energy Action on Materials, Proc. IX Int. Conf. (Novosibirsk, August 18-22, 1986), Institute of Hydrodynamics, Novosibirsk (1986), pp. 106-110.

    Google Scholar 

  16. G. A. Lyzenga and T. J. Ahrens, “Shock temperatures of SiO2 and their geophysical implications” J. Geophys. Res., 88, No. B3, 2431-2444 (1983).

    Google Scholar 

  17. L. V. Al'tshuler and I. I. Sharipdzhanov, “Additive equations of state for silicates at high pressures” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 3, 11-28 (1971).

    Google Scholar 

  18. Ya. B. Zel'dovich amd Yu. P. Raizer, Physics of Shock Waves and High-Temperature Magnetohydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  19. S. D. Hamann and M. Linton, “Electrical conductivity of water in shock compression” Trans. Farad. Soc., 62, 2234-2241 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorshkov, M.M., Zaikin, V.T. & Lobachev, S.V. Electrical Conductivity of Rocks under Shock Compression. Journal of Applied Mechanics and Technical Physics 42, 196–201 (2001). https://doi.org/10.1023/A:1018807415208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018807415208

Keywords

Navigation