Skip to main content
Log in

The Mammary Fat Pad

  • Editorial Commentary
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary fat pad is essential for developmentof the mammary epithelium, providing signals thatmediate ductal morphogenesis and, probably, alveolardifferentiation. The “cleared” fat pad is often used as a transplantation site.Considering the crucial role of the fat pad, itsproperties have received relatively little attentionfrom researchers in the field. Some of the questionswhose investigation is pertinent to understanding both normalmammary development and carcinogenesis are outlined inthis commentary in the spirit of stimulating enquiryinto this important subject. It is clear from a brief perusal of the available literature that untilstudies are specifically designed to clearlydifferentiate between functional effects of the fibrousand the adipose stroma, more substantive informationabout their differential effects on mammarydevelopment and tumorigenesis will not beforthcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. D. Cardiff (1998). Are the TDLU of the human the same as the LA of mice? J. Mam. Gland Biol. Neoplasia 3: 3-6.

    Google Scholar 

  2. S. A. Bartow (1998). Use of the autopsy to study ontogeny and expression of the estrogen receptor gene in human breast. J. Mam. Gland Biol. Neoplasia 3: 37-48.

    Google Scholar 

  3. J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177: 533-547.

    Google Scholar 

  4. E. J. Blanchette-Mackie, N. K. Dwyer, T. Barber, R. A. Coxey, T. Takeda, C. M. Rondinone, J. L. Theodorakis, A. S. Greenberg, and C. Londos (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36: 1211-1226.

    Google Scholar 

  5. T. Sakakura, Y. Sakagami, and Y. Nishizuka (1982). Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Devel. Biol. 91: 202-207.

    Google Scholar 

  6. C. Pechoux, P. Clezardin, R. Dante, C. M. Serre, M. Clergot, N. Bertin, J. Lawler, P. D. Delmas, J. L. Vauzelle, and L. Frappart (1994). Localization of thrombospondin, CD36 and CD51 during prenatal development of the human mammary gland. Differentiation 57: 133-141.

    Google Scholar 

  7. T. Sakakura, I. Kusano, M. Kusakabe, Y. Inaguma, and Y. Nishizuka (1987). Biology of mammary fat pad in fetal mouse: capacity to support development of various fetal epithelia in vivo. Development 100: 421-430.

    Google Scholar 

  8. L. J. Faulkin and K. B. DeOme (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J. Natl. Cancer Inst. 24: 953-969.

    Google Scholar 

  9. K. Hoshino (1962). Morphogenesis and growth potentiality of mammary gland in mice. Transplantabili ty of growth potentiality of mammary tissue of virgin mice. J. Natl. Cancer Inst. 29: 835-849.

    Google Scholar 

  10. K. B. DeOme, L. J. Faulkin, H. A. Bern, and P. B. Blair (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19: 515-525.

    Google Scholar 

  11. P. A. W. Edwards, C. Abram, and J. M. Bradbury (1996). Genetic manipulation of mammary epithelium by transplantation. J. Mam. Gland Biol. Neoplasia 1: 75-89.

    Google Scholar 

  12. D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Devel. Neoplasia 1: 5-19.

    Google Scholar 

  13. C. W. Welsch, D. H. O'Connor, C. F. Aylsworth, and L. G. Sheffield (1987). Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J. Natl. Cancer. Inst. 78: 557-565.

    Google Scholar 

  14. S. Z. Haslam and L. J. Counterman (1991). Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Endocrinology 129: 2017-2023.

    Google Scholar 

  15. J. F. Levine and F. E. Stockdale (1984). 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp. Cell Res. 151: 112-122.

    Google Scholar 

  16. J. F. Levine and F. E. Stockdale (1985). Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell Biol. 100: 1415-1422.

    Google Scholar 

  17. K. Hoshino (1980). Mammary transplantation and its histogenesis in mice. In A. Yokoyama, H. Mizuno, and H. Nagasawa, (eds.), Physiology of Mammary Glands University Park Press, Baltimore, pp. 163-228.

    Google Scholar 

  18. K. Hoshino (1967). Transplantabili ty of mammary gland in brown fat pads of mice. Nature 213: 194-195.

    Google Scholar 

  19. E. Anderson (1998). Estrogen receptor and mammary cell growth. J. Mam. Gland Biol. Neoplasia 3: 23-35

    Google Scholar 

  20. C. W. Daniel, S. Robinson, and G. B. Silberstein (1996). The role of TGF-βin patterning and growth of the mammary ductal tree. J. Mam. Gland Biol. Neoplasia 1: 331-341.

    Google Scholar 

  21. B. E. Elliot, S.-P. Tam, D. Dexter, and Z. Q. Chen (1992). Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: Effect of estrogen and progesterone. Int. J. Cancer 51: 416-424.

    Google Scholar 

  22. F. R. Miller, D. Medina, and G. H. Heppner (1981). Preferential growth of mammary tumors in intact mammary fat pads. Cancer Res. 41: 3863-3867.

    Google Scholar 

  23. E. M. Rivera and S. Vijayaraghavan (1982). Proliferation of ductal outgrowths by carcinogen-induce d rat mammary tumors in gland-free mammary fat pads. J. Natl. Cancer Inst. 69: 517-525.

    Google Scholar 

  24. H.M. Jensen and S. R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. 36: 2605-2610.

    Google Scholar 

  25. J. Yang, T. Tsukamoto, N. Popnikolov, R. C. Guzman, X. Y. Chen, J. H. Yang, and S. Nandi (1995). Adenoviral-mediated gene transfer into primary human and mouse mammary epithelial cells in vitro and in vivo. Cancer Lett. 98: 9-17.

    Google Scholar 

  26. L. G. Sheffield (1988). Organization and growth of mammary epithelia in the mammary gland fat pad. J. Dairy Sci. 71: 2855-2874.

    Google Scholar 

  27. G. K. Bandyopadhyay, L.-Y. Lee, R. C. Guzman, and S. Nandi (1995). Effect of reproductive states on lipid mobilization and linoleic acid metabolism in mammary glands. Lipids 30: 155-162.

    Google Scholar 

  28. V. Chajes, T. Niyongabo, M. Lanson, A. Fignon, C. Couet, and P. Bougnoux (1992). Fatty-acid composition of breast and iliac adipose tissue in breast-cancer patients. Int. J. Cancer 50: 405-408.

    Google Scholar 

  29. M. Rebuffé-Scrive, J. Eldh, L.-O. Hafström, and P. Björntorp (1986). Metabolism of mammary abdominal and femoral adipocytes in women before and after menopause. Metabolism 35: 792-797.

    Google Scholar 

  30. W. R. Kidwell, R. A. Knazek, B. K. Vonderhaar, and I. Losonczy (1982). Effects of unsaturated fatty acids on the development and proliferation of normal and neoplastic breast epithelium. In M.S. Arnott, J. van Eys, and Y.-M. Wang, Molecular Interrelations of Nutrition and Cancer (eds.), Raven Press, New York, pp. 219-236.

    Google Scholar 

  31. I. N. Soemarwoto, and H. A. Bern (1958). The effect of hormones on the vascular pattern of the mouse mammary gland. Am. J. Anat. 103: 403-436.

    Google Scholar 

  32. J. J. Berger, and C. W. Daniel (1983). Stromal DNA synthesis is stimulated by young, but not serially aged, mouse mammary epithelium. Mech. Aging Devel. 23: 277-284.

    Google Scholar 

  33. T. Sakakura (1987) Mammary Embryogenesis. In M. C. Neville and C. W. Daniel, (eds.), The Mammary Gland Plenum Press, New York, pp. 37-68.

    Google Scholar 

  34. C. W. Daniel, J. M. Shannon, and G. R. Cunha (1983). Transplanted mammary epithelium grows in association with host stroma: Aging of serially transplanted mammary gland is intrinsic to epithelial cells. Mech. Aging Devel. 23: 259-264.

    Google Scholar 

  35. J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Devel. Biol. 97: 274-290.

    Google Scholar 

  36. G. R. Cunha (1994). Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74: (Suppl) 1030-1044.

    Google Scholar 

  37. C. W. Daniel, J. J. Berger, P. Strickland, and R. Garcia (1984). Similar growth pattern of mouse mammary epithelium cultivated in collagen matrix in vivo and in vitro. Devel. Biol. 104: 57-64.

    Google Scholar 

  38. J. C. Beck, H. L. Hosick, and B. A. Watkins (1989). Growth of epithelium from a preneoplastic mammary outgrowth in response to mammary adipose tissue. In Vitro Cell. Devel. Biol. 25: 409-418.

    Google Scholar 

  39. R. C. Hovey, D. D. S. Mackenzie, and T. B. McFadden (1998). The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro. In Vitro Cell. Devel. Biol. (in press).

  40. P. S. Rudland, A. C. Twiston Davies, and S.-W. Tsao (1984). Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia—prostaglandin E2. J. Cell. Physiol. 120: 364-376.

    Google Scholar 

  41. B. Niranjan, L. Buluwela, J. Yant, N. Perusinghe, A. Atherton, D. Phippard, T. Dale, B. Gusterson, and T. Kamalati (1995). HGF/SF: A potent cytokine for mammary growth, morphogenesis and development. Development 121: 2897-2908.

    Google Scholar 

  42. Y. M. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131: 215-226.

    Google Scholar 

  43. J. V. Soriano, M. S. Pepper, L. Orci, and R. Montesano (1998). Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary gland ductal morphogenesis. J. Mam. Gland Biol. Neoplasia 3: xx-xx.

    Google Scholar 

  44. W. Ruan, V. Catanese, R. Wieczorek, M. Feldman, and D. L. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136: 1296-1302.

    Google Scholar 

  45. C. Singer, A. Rasmussen, H. S. Smith, M. E. Lippman, H. T. Lynch, and K. J. Cullen (1995). Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: Evidence for paracrine function. Cancer Res. 55: 2448-2454.

    Google Scholar 

  46. R. C. Hovey, H. W. Davey, D. D. S. Mackenzie, and T. B. McFadden (1998). Ontogeny and epithlelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol. Cell. Endocrinol. 136: 139-144.

    Google Scholar 

  47. S. Chakravorti and L. G. Sheffield (1996). Acidic and basic fibroblast growth factor mRNA and protein in mouse mammary glands. Endocrine 4: 175-182.

    Google Scholar 

  48. G. R. Cunha and Y. K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1: 21-35.

    Google Scholar 

  49. S. M. Snedeker, C. F. Brown, and R. P. Diaugustine (1991). Expression and functional properties of transforming growth factor α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 88: 276-280.

    Google Scholar 

  50. S. J. Weber-Hall, D. J. Phippard, C. C. Neimeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57: 205-214.

    Google Scholar 

  51. M.M. Zutter, H. Sun, and S. A. Santoro (1998). Altered integrin expression and the malignant phenotype: The contribution of multiple integrated integrin receptors. J. Mam. Gland Biol. Neoplasia 3: 191-200.

    Google Scholar 

  52. D. L. Kleinberg (1997). Early mammary development: growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2: 49-58.

    Google Scholar 

  53. J. L. Fendrick, A. M. Raafat, and S. Z. Haslam (1998). Mammary gland growth and development from the postnatal period to post-menopause: Ovarian steroid receptor ontogeny and regulation in the mouse. J. Mam. Gland Biol. Neoplasia 3: 7-22.

    Google Scholar 

  54. D. R. Jensen, S. Gavigan, V. Sawicki, D. Witsell, R. H. Eckel, and M. C. Neville (1994). Regulation of lipoprotein lipase activity in the mammary gland of the lactating mouse. Biochem. J. 298: 321-327.

    Google Scholar 

  55. M. H. Barcellos-Hoff (1998). Radiation-induced microenvironments. J. Mam. Gland Biol. Neoplasia 3: 165-175.

    Google Scholar 

  56. T. Sakakura (1981). Accelerated mammary cancer development by fetal salivary mesenchyme isografted to adult mouse mammary epithelium. J. Natl. Cancer Inst. 66: 953-959.

    Google Scholar 

  57. L. Ronnov-Jessen, O. W. Petersen, and M. J. Bissell (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. [Review]. Physiol. Rev. 76: 69-125.

    Google Scholar 

  58. D. R. Jensen, D. H. Bessesen, J. Etienne, R. H. Eckel, and M. C. Neville (1991). Distribution and source of lipoprotein lipase in mouse mammary gland. J. Lipid Res. 32: 733-742.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neville, M.C., Medina, D., Monks, J. et al. The Mammary Fat Pad. J Mammary Gland Biol Neoplasia 3, 109–116 (1998). https://doi.org/10.1023/A:1018786604818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018786604818

Navigation