Skip to main content
Log in

Impact Of Snow Drift On The Antarctic Ice Sheet Surface Mass Balance: Possible Sensitivity To Snow-Surface Properties

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A mesoscale atmospheric numerical model is coupled with a physically based snow-pack model and with a snow-drift model. The snow model is verified for the French Alps by comparing its simulations to observations performed at the Col de Porte in the Chartreuse Massif. The snow erosion threshold depends on snow-pack properties such as density, dendricity, sphericity and particle size. The atmospheric turbulence scheme is modified in order to take into account stabilization effects due to airborne blown snow particles. In particular, vertically integrated stability functions for the stable boundary layer are completed by including the threshold friction velocity for snow erosion. The snow-drift model is calibrated by simulating the conditions observed during the Byrd snow project, held in West Antarctica in 1962. Finally, sensitivity experiments to the snow-surface properties show the importance of their accurate representation when modelling the contribution of deflation to the Antarctic surface mass balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bintanja, R.: 1998, 'The Interaction between Drifting Snow and Atmospheric Turbulence', Ann. Glaciol. 26, 167-173.

    Google Scholar 

  • Bromwich, D. H.: 1988, 'Snowfall in High Southern Latitudes', Rev. Geophys. 26, 149-168.

    Google Scholar 

  • Brun, E.,David, P.Sudul, M., and Brunot, G.: 1992, 'A Numerical Model to Simulate Snowcover Stratigraphy for Operational Avalanche Forecasting', J. Glaciol. 38(128), 13-22.

    Google Scholar 

  • Budd, W.,Dingle, R., and Radok. U.: 1966, 'The Byrd Snow Drift Project: Outline and Basic Results', in M. J. Rubin (ed.), Studies in Antarctic Meteorology, American Geophysical Union, Washington D.C., pp. 71-134.

    Google Scholar 

  • Chamberlain, A. C.: 1983, 'Roughness Length of Sea, Sand and Snow', Boundary-Layer Meteorol. 25, 405-409.

    Google Scholar 

  • Connolley, W. M.: 1996, 'The Antarctic Temperature Inversion', Int. J. Climatol. 16, 1333-1342.

    Google Scholar 

  • de Montrnollin, V.: 1978, Introduction à la rhéologie de la neige, Thè se de l'Université Scientifique et Médicale de Grenoble, 285 pp.

  • Duynkerke, P. C.: 1988, 'Application of the E-e Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer', J. Atmos. Sci. 45, 865-880.

    Google Scholar 

  • Duynkerke, P. G.: 1991, 'Radiation Fog: A Comparison of Model Simulation with Detailed Observations', Mon. Wea. Rev. 119, 324-341.

    Google Scholar 

  • Fouquart, Y. and Bonnel, B.: 1980, 'Computation of the Solar Heating of the Earth's Atmosphere: A New Parameterization', Beitr. Phys. Atmosph. 53, 35-62.

    Google Scholar 

  • Gallée, H.: 1995, 'Simulation of the Mesocyclonic Activity in the Ross Sea, Antarctica', Mon. Wea. Rev. 123, 2051-2069.

    Google Scholar 

  • Gallée, H.: 1998, 'A Simulation of Blowing Snow over the Antarctic Ice Sheet', Ann. Glaciol. 26, 203-205.

    Google Scholar 

  • Gallée H. and Duynkerke, P.: 1997, 'Air-Snow Interactions and the Surface Energy andMass Balance over the Melting Zone of West Greenland during GIMEX', J. Geophys. Res. 102, 13813-13824.

    Google Scholar 

  • Gallée, H. and Schayes, G.: 1992, 'Dynamical Aspects of KatabaticWinds Evolution in the Antarctic Coastal Zone', Boundary-Layer Meteorol. 59, 141-161.

    Google Scholar 

  • Gallée, H. and Schayes, G.: 1994, 'Development of a Three-Dimensional Meso-Primitive Equations Model. Katabatic Winds Simulation in the Area of Terra Nova Bay, Antarctica', Mon. Wea. Rev. 122, 671-685.

    Google Scholar 

  • Genthon, C. and Braun, A.: 1995, 'ECMWF Analyses and Predictions of the Surface Climate of Greenland and Antarctica', J. Climate 8, 2324-2332.

    Google Scholar 

  • Giovinetto, M. B.,Bromwich, D. H., and Wendler, G.: 1992, 'Atmospheric Net Transport of Water Vapor and Latent Heat across 70º S', J. Geophys. Res. 97, 917-930.

    Google Scholar 

  • Guyomarc'h, G. andMerindol, L.: 1998, 'Validation of a Forecasting Application of Blowing Snow Periods', Ann. Glaciol. 26, 138-143.

    Google Scholar 

  • Kessler, E.: 1969, 'On the Distribution and Continuity of Water Substance in Atmospheric Circulation', Meteorological Monographs, Vol. 10, No. 32, American Meteorological Society.

  • King, J. C,Anderson, P. S.,Smith, M. C., and Mobbs, S. D.: 1996, 'The Surface Energy and Mass Balance at Halley, Antarctica, during Winter', J. Geophys. Res. 101, 19119-19128.

    Google Scholar 

  • Kotlyakov, V. M.: 1961, 'Results of a Study of the Processes of Formation and Structure of the Upper Layer of the Ice Sheet in Eastern Antarctica', Antarctic Glaciology, Vol. 55, IAHS Press, pp. 88-99.

    Google Scholar 

  • Lejeune, Y. and Martin, E.: 1995, Application du modè le CROCUS aux données de la saison 93/94 du Col de Porte et de la campagne Leadex 92, Note de Centre No. 6, Centre d'Etudes de la Neige, Météo, France, 55 pp.

    Google Scholar 

  • Li, L. and Pomeroy, J. W.: 1997, 'Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data', J. Appl. Meleorol. 36, 205-213.

    Google Scholar 

  • Lin Y.-L.,Farley, R. D., and Orville, H. D.: 1983, 'Bulk Parameterization of the Snow Field in a Cloud Model', J. Appl. Meteorol. 22, 1065-1091.

    Google Scholar 

  • Male, D.H.: 1980, 'The Seasonal Snow Cover', in S. C. Colbeck (ed.), Dynamics of Snow and Ice Masses, Academic Press, New York, pp. 305-395.

    Google Scholar 

  • Morcrette, J. J.: 1984, Sur la paramétrisation du rayonnement dans les modè les de la circulation générale atmosphérique, Univ. des Sci. et Tech. de Lille, Lille, France, Thè se de Doctorat d'Etat, 373 pp.

    Google Scholar 

  • Owen, P. R.: 1964, 'Saltation of Uniform Grains in Air', J. Fluid. Mech. 20, 225-242.

    Google Scholar 

  • Pettré, P. and André, J.-C.: 1991, 'Surface-Pressure Change through Loewe's Phenomena and Katabatic Flow Jumps: Study of Two Cases in Adélie Land, Antarctica', J. Atmos. Sci. 48, 557-571.

    Google Scholar 

  • Pomeroy, J. W.: 1989, 'A Process-Based Model of Snow Drifting', Ann. Glaciol. 6, 237-240.

    Google Scholar 

  • Pomeroy, J. W. and Male, D. H.: 1992, Steady-State Suspension of Snow, J. Hydrol. 136, 275-301.

    Google Scholar 

  • Pomeroy, J. W.,Gray, D. M., and Landine, P. G.: 1993, 'The Prairie Blowing Snow Model: Characteristics, Validation, Operation', J. Hydrol. 144, 165-192.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • van den Broeke, M.: 1997, 'Spatial and Temporal Variation of Sublimation on Antarctica, Results of a High-Resolution General Circulation Model', J. Geophys. Res. 102, 29765-29777.

    Google Scholar 

  • Vaughan, D. G.,Bamber, J. L.,Giovinetto, M.,Russel, J., and Cooper, A. P. R.: 1999, 'Reassessment of Net Surface Mass Balance in Antarctica', J. Climate 12, 933-946.

    Google Scholar 

  • Wamser, C. and Lykossov, V. N.: 1995, 'On the Friction Velocity during Blowing Snow', Contr. Atmos. Phys. 68, 85-94.

    Google Scholar 

  • Wendler, G. and Kelley, J.: 1988, 'On the Albedo of Snow in Antarctica: A Contribution to I.A.G.O.', J. Glaciol. 34(116): 19-25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallée, H., Guyomarc'h, G. & Brun, E. Impact Of Snow Drift On The Antarctic Ice Sheet Surface Mass Balance: Possible Sensitivity To Snow-Surface Properties. Boundary-Layer Meteorology 99, 1–19 (2001). https://doi.org/10.1023/A:1018776422809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018776422809

Navigation