Skip to main content
Log in

Developmental and Hormonal Regulation of Protein N-Glycosylation in the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Glycosylation represents the most commonconjugation of both membrane-bound and secreted proteinsof animal cells. Among the different types ofglycosylation, the N-linked attachment of sugars to thepolypeptide backbone is by far the most abundantmodification. The biosynthesis of the precursorcarbohydrate unit of these proteins is initiated by astepwise assembly ofGlc3Man9Glc2NAc P-P-Dolin the dolichol cycle, its transfer en bloc to the nascent polypeptidein the rough endoplasmic reticulum (RER),3followed by excision of the glucosyl residues byprocessing-specific enzymes, glucosidase I and II, alsoresident in the endoplasmic reticulum. Additionalposttranslational modifications of the carbohydratemoiety in the RER, Golgi, and trans -Golgi network,differ for individual glycoproteins for the completionof final products as high mannose, complex orhybrid glycoproteins en route to their finaldestinations in the secretory pathway. The enzymeGlcNAc-1-P transferase (GPT) catalyzes the first andcommitted step, i.e., the transfer of GlcNAc-1-P fromUDP-GlcNAc to Dol-P to form GlcNAc-P-PDol, in theassembly of the oligosaccharide precursor. GlucosidaseI triggers the maturation phase by clipping the distalα 1,2-linked Glc residue on the incipientglycoprotein. The critical juxtaposition of the twoenzymes in the multistep pathway makes them excellentcandidates for the overall regulation of proteinN-glycosylation. The highly elevated needs of glycosylationduring lactation demand regulation of glycosylation inthe gland over and above the levels in the quiescent,virgin and postlactating, regressed gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Varki (1993). Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97-130.

    Google Scholar 

  2. J. F. G. Vliegenthart and J. Montreuil (1995). Primary structures of glycoprotein glycans. In J. Montreuil, J. F. G. Vliegenthart, and H. Schachter (eds.), Glycoproteins Elsevier, New York, pp. 13-28.

    Google Scholar 

  3. A. K. Menon (1991). Biosynthesis of glycosylphosphatidylinositol. Cell Biol. Int. Reports 15: 1007-1021.

    Google Scholar 

  4. G. W. Hart, L. K., Kreppel, F. I. Comer, C. S. Arnold, D. M. Snow, Z. Ye, X. Cheng, D. DellaManna, D. S. Caine, B. J. Earles, Y. Akimoto, R. Cole, and B. K. Hayes (1996). O-GlcNAcylation of key nuclear and cytoskeletal proteins: Reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 6: 711-716.

    Google Scholar 

  5. I. Brockhausen and W. Kuhns (1996). Glycoproteins and Human Disease Chapman and Hall, New York, p. 245.

    Google Scholar 

  6. R. Kornfeld and S. Kornfeld (1985). Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631-664.

    Google Scholar 

  7. A. R. Rodan, J. F. Simons, E. S. Trombetta, and A. Helenius (1997). N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J. 15: 6921-6930.

    Google Scholar 

  8. D. N. Hebert, B. Foellmer, and A. Helenius (1995). Glucose trimming and reglycosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81: 425-433.

    Google Scholar 

  9. J. M. Rosen. (1987). In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland—Development, Regulation, and Function Plenum Press, New York, pp. 310-350.

    Google Scholar 

  10. I. A. Forsyth (1983). The endocrinology of lactation. In T. B. Mepham (ed.), Biochemistry of Lactation Elsevier, New York, pp. 309-350.

    Google Scholar 

  11. B. L. Larsen and V. R. Smith (1974). Lactation—A Comprehensive Treatise Academic Press, New York, Vol. 1-4.

    Google Scholar 

  12. W. S. Bawden, R. J. Passey, and A. G. Mackinlay (1995). The genes encoding the major milk specific proteins and their use in transgenic studies and protein engineering. Biotech. Genet. Engin. Rev. 12: 89-137.

    Google Scholar 

  13. M. A. M. Groenen and J. J. van der Poel (1994). Regulation of expression of milk protein gene: a review. Livestock Production Sci. 38: 61-78.

    Google Scholar 

  14. G. R. Hayes and J. J. Lucas (1983). Stimulation of lipid-linked oligosaccharide assembly during oviduct differentiation. J. Biol. Chem. 258: 15095-15100.

    Google Scholar 

  15. A. Dutt, J.-P. Tang, J. K. Welply, and D. D. Carson (1986). Regulation of N-linked glycoprotein assembly in uteri by steroid hormones. Endocrinology 118: 661-673.

    Google Scholar 

  16. J. P. Bradshaw and D. A. White (1981). Glycoprotein synthesis in explants of developing rabbit mammary gland in culture. Biochem. J. 198: 683-690.

    Google Scholar 

  17. J. P. Bradshaw, J. Hatton, and D. A. White (1985). The hormonal control of protein N-glycosylation in the developing rabbit mammary gland and its effect upon transferrin synthesis and secretion. Biochim. Biophys. Acta 847: 344-351.

    Google Scholar 

  18. R. S. Eisenstein and J. M. Rosen (1988). Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted at the post transcriptional level. Mol. Cell Biol. 8: 3183-3190.

    Google Scholar 

  19. H. S. Goodman and J. M. Rosen (1990). Transcriptional analysis of the mouse β-casein gene. Mol. Endocrinol. 4: 1661-1670.

    Google Scholar 

  20. C. S. Lee and T. Oka (1992). A pregnancy-specific mammary nuclear factor involved in the repression of the mouse β-casein gene transcription by progesterone. J. Biol. Chem. 267: 5797-5801.

    Google Scholar 

  21. C. S. Lee and T. Oka (1992). Progesterone regulation of a pregnancy-specific transcription repressor to β-casein gene promoter in mouse mammary gland. Endocrinology 131: 2257-2262.

    Google Scholar 

  22. M. Yoshimura and T. Oka (1990). Transfection of β-casein chimeric gene and hormonal induction of its expression in primary murine mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 87: 3670-3674.

    Google Scholar 

  23. A. Kanai, N. Nonomura, M. Yoshimura, and T. Oka (1993). DNA-binding proteins and their cis-acting sites controlling hormonal induction of a mouse β-casein CAT fusion protein in murine mammary epithelial cells. Gene 126: 195-201.

    Google Scholar 

  24. M. L. Li, J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell (1987). Influence of reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 84: 136-140.

    Google Scholar 

  25. F. F. Bolander, K. R. Nicholas, J. J. Van Wyk, and Y. J. Topper (1987). Insulin is essential for accumulation of casein mRNA in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 78: 5682-5684.

    Google Scholar 

  26. Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60: 1049-1106.

    Google Scholar 

  27. M. Schmitt-Ney, B. Happ, R. K. Ball, and B. Groner (1992). Developmental and environmental regulation of mammary gland-specific nuclear factor essential for transcription of the gene encoding β-casein. Proc. Natl. Acad. Sci. U.S.A. 89: 3130-3134.

    Google Scholar 

  28. S. Altiok and B. Groner (1994). β-casein sequesters a single-stranded nucleic acid-binding protein which negatively regulates the β-casein gene promoter. Mol. Cell Biol. 14: 6004-6012.

    Google Scholar 

  29. C. J. Watson, K. E. Gordon, M. Robertson, and A. J. Clark (1991). Interaction of DNA-binding proteins with a milk protein gene promoter in vitro: Identification of a mammary gland specific factor. Nucl. Acids Res. 19: 6603-6610.

    Google Scholar 

  30. C. Schmidhauser, M. J. Bissell, C. A. Myers, and G. F. Casperson (1990). Extracellular matrix and hormones transcriptionally regulate bovine β-casein 5 sequences in stably transfected mouse mammary cells. Proc. Natl. Acad. Sci.U.S.A. 87: 9118-9122.

    Google Scholar 

  31. M. Schmitt-Ney, W. Doppler, R. K. Ball, and B. Groner (1991). β-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific-nuclear factor. Mol. Cell Biol. 11: 3745-3755.

    Google Scholar 

  32. W. Doppler, B. Groner, and R. K. Ball (1989). Prolactin and glucocorticoid hormones synergistically induce expression of a transfected rat β-casein gene promoter constructs in a mammary epithelial cell line. Proc. Natl. Acad. Sci. U.S.A. 86: 104-108.

    Google Scholar 

  33. W. Doppler, T. Welte, and S. Phillip (1995). CCAAT/Enhancer-binding protein isoforms β and δ are expressed in mammary epithelial cells and bind to multiple sites in the β-casein gene promoter. J. Biol. Chem. 270: 17962-17969.

    Google Scholar 

  34. J.-L. Vilotte and S. Soulier (1992). Isolation and characterization of the mouse α-lactalbumin-encoding gene: Interspecies comparison, tissue and stage-specific expression. Gene 119: 287-292.

    Google Scholar 

  35. E. A. Maga and J. D. Murray (1995). Mammary gland expression of transgenes and the potential for altering the properties of milk. Biotechnology 13: 1452-1457.

    Google Scholar 

  36. I. K. Vijay and T. Oka (1986). Developmental regulation of glycosyltransferases involved in biosynthesis of asparagines-linked glycoproteins in mouse mammary gland. Eur. J. Biochem. 154: 57-62.

    Google Scholar 

  37. K. Shailubhai, B. Dong-Yu, E. S. Saxena, and I. K. Vijay (1988). Purification and characterization of UDP-N-acetyl-D-glucosamine: Dolichol phosphate N-acetyl-D-glucosamine-l-phosphate transferase involved in the biosynthesis of asparagine-linked glycoproteins in the mammary gland. J. Biol. Chem. 263: 15964-15972.

    Google Scholar 

  38. B. Rajput, J. Ma, N. Muniappa, L. Schantz, S. L. Naylor, P. A. Lalley, and I. K. Vijay (1992). Mouse UDP-GlcNAc: dolichyl-phosphate N-acetylglucosaminephosphotransferase. Molecular cloning of the cDNA, generation of anti-peptide antibodies and chromosomal localization. Biochem. J. 285: 985-992.

    Google Scholar 

  39. B. Rajput, J. Ma, and I. K. Vijay (1993). Structure and organization of mouse GlcNAc-1-P transferase gene. J. Biol. Chem. 269: 9590-9597.

    Google Scholar 

  40. B. Rajput, M. N. Muniappa, and I. K. Vijay (1994). Developmental and hormonal regulation of GlcNAc-1-P transferase in mouse mammary gland. J. Biol. Chem. 269: 16054-16061.

    Google Scholar 

  41. E. L. Kean (1980). Stimulation by GDP-mannose of the biosynthesis of N-acetylglucosaminylpyrophosphoryl polyprenols by the retina. J. Biol. Chem. 255: 1921-1927.

    Google Scholar 

  42. J. Ma, H. Saito, T. Oka, and I. K. Vijay (1996). Negative regulatory element involved in the hormonal regulation of GlcNAc-1-P transferase gene in mouse mammary gland. J. Biol. Chem. 271: 11197-11203.

    Google Scholar 

  43. K. Shailubhai, M. A. Pratta, and I. K. Vijay (1987). Purification and characterization of glucosidase I involved in N-linked glycoprotein processing in the bovine mammary tissue. Biochem. J. 247: 555-562.

    Google Scholar 

  44. K. Shailubhai, B. Pukazhenthi, E. S. Saxena, G. Varma, and I. K. Vijay (1991). Glucosidase I, a transmembrane endoplasmic reticular protein with a luminal catalytic domain. J. Biol. Chem. 266: 16587-16593.

    Google Scholar 

  45. B. Kalz-Fuller, E. Bieberich, and E. Bause (1995). Cloning and expression of glucosidase I from human hippocampus. Eur. J. Biochem. 231: 344-351.

    Google Scholar 

  46. A. Romaniouk and I. K. Vijay (1997). Structure-function relationships in glucosidase I. Amino acids involved in binding the substrate to the enzyme. Glycobiology 7: 399-404.

    Google Scholar 

  47. K. Shailubhai, E. Saxena, A. K. Balapure, and I. K. Vijay (1990). Developmental regulation of glucosidase I, an enzyme involved in the processing of asparagine-linked glycoproteins in rat mammary gland. J. Biol. Chem. 265: 9701-9706.

    Google Scholar 

  48. N. L. Shaper, M. Charron, N-W. Lo, and J. H. Shaper, B1,4-Galactosyltransferase and lactose biosynthesis: Recruitment of a housekeeping gene from the nonmammalian vertebrate gene pool for a mammary gland specific function. J. Mam. Gland Biol. Neoplasia. 3: 315-324.

  49. X. Zhu and M. A. Lehrman (1990). Cloning sequence, and expression of a cDNA encoding hamster UDP-GlcNAc: Dolichol phosphate N-acetylglucosam ine-1-phosphate transferase. J. Biol. Chem. 265: 14250-14255.

    Google Scholar 

  50. N. Dan, R. B. Middleton, and M. A. Lehrman (1996). Hamster UDP-N-Acetylglucosamine: Dolichol-P N-Acetylglucosamine-1-P transferase has multiple transmembrane spans and a critical cytosolic loop. J. Biol. Chem. 271: 30717-30724.

    Google Scholar 

  51. M. D. Snider, L. A. Sultzman, and P. W. Robbins (1980). Transmembrane localization of oligosaccharide-lipid synthesis in microsomal vesicles. Cell 21: 385-392.

    Google Scholar 

  52. E. Stocklin, M. Wissler, F. Gouilleux, and B. Groner (1996). Functional interactions between STAT5 and the glucocorticoid receptor. Nature 383: 726-728.

    Google Scholar 

  53. J. E. Darnell (1997). STATs and gene regulation. Science 277: 1630-1635.

    Google Scholar 

  54. J. Lechner, T. Welte, J. K. Tomasi, P. Bruno, C. Cairns, J.-A. Gustafsson, and W. Doppler (1997). Promoter-dependent synergy between glucocorticoid receptor and Star5 in the activation of βcasein gene transcription. J. Biol. Chem. 272: 20954-20960.

    Google Scholar 

  55. M. Ujita, K. Furukawa, N. Aoki, T. Sato, A. Noda, R. Nakamura, D. Greenwalt, and T. Matsuda (1993). A change in soybean agglutinin binding patterns of bovine milk fat globule membrane glycoprotein during early lactation. FEBS Lett. 332: 119-122.

    Google Scholar 

  56. T. Sato, K. Furukawa, D. E. Greenwalt, and A. Kobata (1993). Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAcβ1→4GlcNAc groups. J. Biochem. 114: 890-900.

    Google Scholar 

  57. N. Nakata, K. Furukawa, D. E. Greenwalt, and A. Kobata (1993). Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells; occurrence of novel hybrid-type sugar chains containing the Neu5Acα2→6GalNAc, and the Manα1→2Manα1→3Manα1→6Man groups. Biochemistry 32: 4369-4383.

    Google Scholar 

  58. T. Sato, K. Takio, A. Kobata, D. E. Greenwalt, and K. Furukawa (1995). Site-specific glycosylation of butyrophilin. J. Biochem. 117: 147-157.

    Google Scholar 

  59. T. Sato, J. Taka, N. Aoki, T. Matsuda, and K. Furukawa (1997). Expression of β-N-acetylgalactosaminylated N-linked sugar chains is associated with functional differentiation of bovine mammary gland. J. Biochem. 122: 1068-1073.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijay, I.K. Developmental and Hormonal Regulation of Protein N-Glycosylation in the Mammary Gland. J Mammary Gland Biol Neoplasia 3, 325–336 (1998). https://doi.org/10.1023/A:1018771628925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018771628925

Navigation